python实现三次样条插值

本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下

函数:

算法分析

三次样条插值。就是在分段插值的一种情况。

要求:

  • 在每个分段区间上是三次多项式(这就是三次样条中的三次的来源)
  • 在整个区间(开区间)上二阶导数连续(当然啦,这里主要是强调在节点上的连续)
  • 加上边界条件。边界条件只需要给出两个方程。构建一个方程组,就可以解出所有的参数。

这里话,根据第一类样条作为边界。(就是知道两端节点的导数数值,然后来做三次样条插值)

但是这里也分为两种情况,分别是这个数值是随便给的一个数,还是说根据函数的在对应点上数值给出。

情况一:两边导数数值给出

这里假设数值均为1。即 f′(x0)=f′(xn)=f′(xn)=1的情况。

情况一图像


情况一代码

import numpy as np

from sympy import *

import matplotlib.pyplot as plt

def f(x):

return 1 / (1 + x ** 2)

def cal(begin, end, i):

by = f(begin)

ey = f(end)

I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (

ey - Ms[i + 1] / 6) * (n - begin)

return I

def ff(x): # f[x0, x1, ..., xk]

ans = 0

for i in range(len(x)):

temp = 1

for j in range(len(x)):

if i != j:

temp *= (x[i] - x[j])

ans += f(x[i]) / temp

return ans

def calM():

lam = [1] + [1 / 2] * 9

miu = [1 / 2] * 9 + [1]

# Y = 1 / (1 + n ** 2)

# df = diff(Y, n)

x = np.array(range(11)) - 5

# ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))]

ds = [6 * (ff(x[0:2]) - 1)]

for i in range(9):

ds.append(6 * ff(x[i: i + 3]))

# ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:])))

ds.append(6 * (1 - ff(x[-2:])))

Mat = np.eye(11, 11) * 2

for i in range(11):

if i == 0:

Mat[i][1] = lam[i]

elif i == 10:

Mat[i][9] = miu[i - 1]

else:

Mat[i][i - 1] = miu[i - 1]

Mat[i][i + 1] = lam[i]

ds = np.mat(ds)

Mat = np.mat(Mat)

Ms = ds * Mat.I

return Ms.tolist()[0]

def calnf(x):

nf = []

for i in range(len(x) - 1):

nf.append(cal(x[i], x[i + 1], i))

return nf

def calf(f, x):

y = []

for i in x:

y.append(f.subs(n, i))

return y

def nfSub(x, nf):

tempx = np.array(range(11)) - 5

dx = []

for i in range(10):

labelx = []

for j in range(len(x)):

if x[j] >= tempx[i] and x[j] < tempx[i + 1]:

labelx.append(x[j])

elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:

labelx.append(x[j])

dx = dx + calf(nf[i], labelx)

return np.array(dx)

def draw(nf):

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

x = np.linspace(-5, 5, 101)

y = f(x)

Ly = nfSub(x, nf)

plt.plot(x, y, label='原函数')

plt.plot(x, Ly, label='三次样条插值函数')

plt.xlabel('x')

plt.ylabel('y')

plt.legend()

plt.savefig('1.png')

plt.show()

def lossCal(nf):

x = np.linspace(-5, 5, 101)

y = f(x)

Ly = nfSub(x, nf)

Ly = np.array(Ly)

temp = Ly - y

temp = abs(temp)

print(temp.mean())

if __name__ == '__main__':

x = np.array(range(11)) - 5

y = f(x)

n, m = symbols('n m')

init_printing(use_unicode=True)

Ms = calM()

nf = calnf(x)

draw(nf)

lossCal(nf)

情况二:两边导数数值由函数本身算出

这里假设数值均为1。即 f′(xi)=S′(xi)(i=0,n)f′(xi)=S′(xi)(i=0,n)的情况。

情况二图像

情况二代码

import numpy as np

from sympy import *

import matplotlib.pyplot as plt

def f(x):

return 1 / (1 + x ** 2)

def cal(begin, end, i):

by = f(begin)

ey = f(end)

I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (

ey - Ms[i + 1] / 6) * (n - begin)

return I

def ff(x): # f[x0, x1, ..., xk]

ans = 0

for i in range(len(x)):

temp = 1

for j in range(len(x)):

if i != j:

temp *= (x[i] - x[j])

ans += f(x[i]) / temp

return ans

def calM():

lam = [1] + [1 / 2] * 9

miu = [1 / 2] * 9 + [1]

Y = 1 / (1 + n ** 2)

df = diff(Y, n)

x = np.array(range(11)) - 5

ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))]

# ds = [6 * (ff(x[0:2]) - 1)]

for i in range(9):

ds.append(6 * ff(x[i: i + 3]))

ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:])))

# ds.append(6 * (1 - ff(x[-2:])))

Mat = np.eye(11, 11) * 2

for i in range(11):

if i == 0:

Mat[i][1] = lam[i]

elif i == 10:

Mat[i][9] = miu[i - 1]

else:

Mat[i][i - 1] = miu[i - 1]

Mat[i][i + 1] = lam[i]

ds = np.mat(ds)

Mat = np.mat(Mat)

Ms = ds * Mat.I

return Ms.tolist()[0]

def calnf(x):

nf = []

for i in range(len(x) - 1):

nf.append(cal(x[i], x[i + 1], i))

return nf

def calf(f, x):

y = []

for i in x:

y.append(f.subs(n, i))

return y

def nfSub(x, nf):

tempx = np.array(range(11)) - 5

dx = []

for i in range(10):

labelx = []

for j in range(len(x)):

if x[j] >= tempx[i] and x[j] < tempx[i + 1]:

labelx.append(x[j])

elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:

labelx.append(x[j])

dx = dx + calf(nf[i], labelx)

return np.array(dx)

def draw(nf):

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

x = np.linspace(-5, 5, 101)

y = f(x)

Ly = nfSub(x, nf)

plt.plot(x, y, label='原函数')

plt.plot(x, Ly, label='三次样条插值函数')

plt.xlabel('x')

plt.ylabel('y')

plt.legend()

plt.savefig('1.png')

plt.show()

def lossCal(nf):

x = np.linspace(-5, 5, 101)

y = f(x)

Ly = nfSub(x, nf)

Ly = np.array(Ly)

temp = Ly - y

temp = abs(temp)

print(temp.mean())

if __name__ == '__main__':

x = np.array(range(11)) - 5

y = f(x)

n, m = symbols('n m')

init_printing(use_unicode=True)

Ms = calM()

nf = calnf(x)

draw(nf)

lossCal(nf)

以上是 python实现三次样条插值 的全部内容, 来源链接: utcz.com/z/359371.html

回到顶部