最大子矩阵问题实例解析

问题:

求一个M*N的矩阵的最大子矩阵和。

比如在如下这个矩阵中:

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

拥有最大和的子矩阵为:

9 2

-4 1

-1 8

其和为15。

思路:

首先,这个子矩阵可以是任意大小的,而且起始点也可以在任何地方,所以,要把最大子矩阵找出来,我们要考虑多种情况。

假定原始矩阵的行数为M,那么对于子矩阵,它的行数可以是1到M的任何一个数,而且,对于一个K行(K < M)的子矩阵,它的第一行可以是原始矩阵的第1行到 M - K + 1 的任意一行。

例子:

对于上面的矩阵,如果子矩阵的行数是2,那么它可以是下面几个矩阵的子矩阵:

0 -2 -7 0

9 2 -6 2

或者

9 2 -6 2

-4 1 -4 1

或者

-4 1 -4 1

-1 8 0 -2

在每一种情况里(我们这里有三种),我们还要找出一个最大的子矩阵,当然,这只是一种情况的最大子矩阵(局部最大),不一定是global最大。但是,如果我们知道每一种情况的最大,要找出global最大,那就小菜一碟儿了。

在讲在一个特殊情况下求最大子矩阵之前,先讲一个事实:

假设这个最大子矩阵的维数是一维,要找出最大子矩阵, 原理与求“最大子段和问题” 是一样的。最大子段和问题的递推公式是 b[j]=max{b[j-1]+a[j], a[j]},b[j] 指的是从0开始到j的最大子段和。

Java实现示例:

假设原始矩阵为:[9,  2, -6,  2], 那么b[] = {9, 11, 5, 7}, 那么最大字段和为11, 如果找最大子矩阵的话,那么这个子矩阵是 [9, 2]

求最大子段和的代码如下:

public int maxSubsequence(int[] array) {

if (array.length == 0) {

return 0;

}

int max = Integer.MIN_VALUE;

int[] maxSub = new int[array.length];

maxSub[0] = array[0];

for (int i = 1; i < array.length; i++) {

maxSub[i] = (maxSub[i-1] > 0) ? (maxSub[i-1] + array[i]) : array[i];

if (max < maxSub[i]) {

max = maxSub[i];

}

}

return max;

}

 但是,原始矩阵可以是二维的。假设原始矩阵是一个3 * n 的矩阵,那么它的子矩阵可以是 1 * k, 2 * k, 3 * k,(1 <= k <= n)。 如果是1*K,这里有3种情况:子矩阵在第一行,子矩阵在第二行,子矩阵在第三行。如果是 2 * k,这里有两种情况,子矩阵在第一、二行,子矩阵在第二、三行。如果是3 * k,只有一种情况。

为了能够找出最大的子矩阵,我们需要考虑所有的情况。假设这个子矩阵是 2 *k, 也就是说它只有两行,要找出最大子矩阵,我们要从左到右不断的遍历才能找出在这种情况下的最大子矩阵。如果我们把这两行上下相加,情况就和求“最大子段和问题” 又是一样的了。

为了找出在原始矩阵里的最大子矩阵,我们要遍历所有的子矩阵的可能情况,也就是说,我们要考虑这个子矩阵有可能只有1行,2行,。。。到n行。而在每一种情况下,我们都要把它所对应的矩阵部分上下相加才求最大子矩阵(局部)。

比如,假设子矩阵是一个3*k的矩阵,而且,它的一行是原始矩阵的第二行,那么,我们就要在

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

里找最大的子矩阵。

如果把它上下相加,我们就变成了 4, 11, -10,1, 从这个数列里可以看出,在这种情况下,最大子矩阵是一个3*2的矩阵,最大和是15.

为了能够在原始矩阵里很快得到从 i 行到 j 行 的上下值之和,我们这里用到了一个辅助矩阵,它是原始矩阵从上到下加下来的。

假设原始矩阵是matrix, 它每一层上下相加后得到的矩阵是total,那么我们可以通过如下代码实现:

int[][] total = matrix;

for (int i = 1; i < matrix[0].length; i++) {

for (int j = 0; j < matrix.length; j++) {

total[i][j] += total[i-1][j];

}

}

如果我们要求第 i 行到第 j 行之间上下值的和,我们可以通过total[j][k] - total[i-1][k] 得到, k 的范围从1 到 matrix[0].length - 1。

有了这些知识点,我们只需要在所有的情况下,把它们所对应的局部最大子矩阵进行比较,就可以得到全局最大的子矩阵。代码如下:

public int subMaxMatrix(int[][] matrix) {

int[][] total = matrix;

for (int i = 1; i < matrix[0].length; i++) {

for (int j = 0; j < matrix.length; j++) {

total[i][j] += total[i-1][j];

}

}

int maximum = Integer.MIN_VALUE;

for (int i = 0; i < matrix.length; i++) {

for (int j = i; j < matrix.length; j++) {

//result 保存的是从 i 行 到第 j 行 所对应的矩阵上下值的和

int[] result = new int[matrix[0].length];

for (int f = 0; f < matrix[0].length; f++) {

if (i == 0) {

result[f] = total[j][f];

} else {

result[f] = total[j][f] - total[i - 1][f];

}

}

int maximal = maxSubsequence(result);

if (maximal > maximum) {

maximum = maximal;

}

}

}

return maximum;

}

C语言相关的实现

题目

    题目描述: 

    已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。 

    比如,如下4 * 4的矩阵  

      

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

      

    的最大子矩阵是  

      

9 2

-4 1

-1 8

      

    这个子矩阵的大小是15。 

    输入: 

    输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。 

    再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。 

    已知矩阵中整数的范围都在[-127, 127]。 

    输出: 

    测试数据可能有多组,对于每组测试数据,输出最大子矩阵的大小。 

    样例输入:  

    4 

    0 -2 -7 0 

    9 2 -6 2 

    -4 1 -4  1 

    -1 8  0 -2  

    样例输出: 

    15 


AC代码

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int i, j, h, k, n, max, sum, cur, matrix[101][101];

while (scanf("%d", &n) != EOF) {

// 初始化接收矩阵

for (i = 0; i < n; i ++) {

for (j = 0; j < n; j ++)

scanf("%d", *(matrix + i) + j);

}

// 动态规划(类似于一维数组连续最大子序列和)

max = matrix[0][0];

for (i = 0; i < n; i ++) {

// i,j确定上下界

for (j = i; j < n; j ++) {

// 初始化

for (k = i, sum = 0; k <= j; k ++)

sum += matrix[k][0];

if (sum > max)

max = sum;

for (h = 1; h < n; h ++) {

for (k = i, cur = 0; k <= j; k ++)

cur += matrix[k][h];

if (sum >= 0)

sum += cur;

else

sum = cur;

if (sum > max) max = sum;

}

}

}

printf("%d\n", max);

}

return 0;

}

以上是 最大子矩阵问题实例解析 的全部内容, 来源链接: utcz.com/z/359058.html

回到顶部