Prim(普里姆)算法求最小生成树的思想及C语言实例讲解

Prim 算法思想:

从任意一顶点 v0 开始选择其最近顶点 v1 构成树 T1,再连接与 T1 最近顶点 v2 构成树 T2, 如此重复直到所有顶点均在所构成树中为止。

最小生成树(MST):权值最小的生成树。

生成树和最小生成树的应用:要连通n个城市需要n-1条边线路。可以把边上的权值解释为线路的造价。则最小生成树表示使其造价最小的生成树。

构造网的最小生成树必须解决下面两个问题:

1、尽可能选取权值小的边,但不能构成回路;

2、选取n-1条恰当的边以连通n个顶点;

MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。

prim算法假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:

在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。

此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。

 Prim算法的核心:始终保持TE中的边集构成一棵生成树。

注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。

举个简单的例子来说明具体的实现方法:

G:图,用邻接矩阵表示

vcount:表示图的顶点个数

max_vertexes:图最大节点数

infinity:为无穷大

数组存储从0开始

由于最小生成树包含每个顶点,那么顶点的选中与否就可以直接用一个数组来标记used[max_vertexes];(我们这里直接使用程序代码中的变量定义,这样也易于理解);当选中一个数组的时候那么就标记,现在就有一个问题,怎么来选择最小权值边,注意这里最小权值边是有限制的,边的一个顶点一定在已选顶点中,另一个顶点当然就是在未选顶点集合中了。我最初的一个想法就是穷搜了,就是在一个集合中选择一个顶点,来查找到另一个集合中的最小值,这样虽然很易于理解,但是很明显效率不是很高,在严蔚敏的《数据结构》上提供了一种比较好的方法来解决:设置两个辅助数组lowcost[max_vertexes]和closeset[max_vertexes],lowcost[max_vertexes]数组记录从U到V-U具有最小代价的边。对于每个顶点v∈V-U,closedge[v], closeset[max_vertexes]记录了该边依附的在U中的顶点。

Prim 算法步骤:

T0 存放生成树的边,初值为空

输入加权图的带权邻接矩阵 C = (Cij)n×n (两点间无边相连则其大小为无穷)

为每个顶点 v 添加一属性 L(v) :表 v 到 T0 的最小直接距离

(1) T0←∅, V1={v0}, C(T0)=0

(2) 对任意v ∈ V,L(v)←C(v, v0)

(3) If V==V1 then stop else goto next.

(4) 在 V-V1 中找点 u 使 L(u) =min{ L(v) | v ∈ (V − V1 )},记 V1 中与 u 相邻点为 w.

(5) T0←T0∪{(u, w)}, C(T0) ←C(T0)+C(u, w), V1←V1∪{u}

(6) 对任意v ∈ (V − V1 ) if C(v, u)<L(v) then L(v) = C(v, u) else L(v)不变。

(7) Go to 3.

C++实现示例

prim.txt中的内容:

1 2 6

1 3 1

1 4 5

2 3 5

2 5 3

3 4 5

3 5 6

3 6 4

5 6 6

4 6 2

 

程序代码:

#include<stdo.h>

#include<string.h>

#include <stdlib.h>

#define infinity 1000000 // 定义两个不直接相邻一步到达顶点的距离

#define max_vertexes 6 // 定义图形中顶点的个数

typedef int Graph[max_vertexes][max_vertexes];// 边上的权值

void prim(Graph G,int vcount,int father[])

{

int i,j,k;

int lowcost[max_vertexes];//最小代价边上的权值

int closeset[max_vertexes],used[max_vertexes];//依附在U中的顶点;标记是否已被选中

int min;

int result=0;//记录最短距离权值的和

for (i=0;i<vcoun;k++) //初始化所有数组,把最短距离初始化为其他顶点到1结点的距离

{

lowcost[i]=G[0][i];

closeset[i]=0;

used[i]=0;

father[i]=-1;

}

used[0]=1;

for (i=1;i<=vcount-1;i++)

{

j=0;

min = infinity;

for (k=1;k<count;k++) //for循环得到离结点最近的顶点j

if ((!used[k])&&(lowcost[k]

{

min = lowcost[k];

j=k;

}

father[j]=closeset[j];

printf("%d %d\n",j+1,father[j]+1);//输出当前找到的结点,该顶点依附的上一个结点

result=result+G[j][closeset[j]];

used[j]=1;;//把第j个顶点并入了U中

for (k=1;k

if (!used[k]&&(G[j][k]保留到k的最短路径

{

lowcost[k]=G[j][k];

closeset[k]=j;

}

}

printf("%d",result);

}

int main()

{

FILE *fr;

int i,j,weight;

Graph G;

int fatheer[max_vertexes];

for(i=0; i<max_vertexes;i++)

for(j=0; j<max_vertexer;i++)

G[i][j] = infinity;

fr = fopen("prim.txt","r");

if(!fr)

{

printf("fopen failed\n");

exit(1);

}

while(fscanf(fr,"%d%d%d", &i, &j, &weight) != EOF)

{

G[i-1][j-1] = weight;

G[j-1][i-1] = weight;

}

prim(G,max_vertexes,fatheer);

return 0;

}

测试的结果如下:


以上是 Prim(普里姆)算法求最小生成树的思想及C语言实例讲解 的全部内容, 来源链接: utcz.com/z/359035.html

回到顶部