Python编程实现线性回归和批量梯度下降法代码实例

通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多:

import numpy as np

import matplotlib.pyplot as plt

import random

class dataMinning:

datasets = []

labelsets = []

addressD = '' #Data folder

addressL = '' #Label folder

npDatasets = np.zeros(1)

npLabelsets = np.zeros(1)

cost = []

numIterations = 0

alpha = 0

theta = np.ones(2)

#pCols = 0

#dRows = 0

def __init__(self,addressD,addressL,theta,numIterations,alpha,datasets=None):

if datasets is None:

self.datasets = []

else:

self.datasets = datasets

self.addressD = addressD

self.addressL = addressL

self.theta = theta

self.numIterations = numIterations

self.alpha = alpha

def readFrom(self):

fd = open(self.addressD,'r')

for line in fd:

tmp = line[:-1].split()

self.datasets.append([int(i) for i in tmp])

fd.close()

self.npDatasets = np.array(self.datasets)

fl = open(self.addressL,'r')

for line in fl:

tmp = line[:-1].split()

self.labelsets.append([int(i) for i in tmp])

fl.close()

tm = []

for item in self.labelsets:

tm = tm + item

self.npLabelsets = np.array(tm)

def genData(self,numPoints,bias,variance):

self.genx = np.zeros(shape = (numPoints,2))

self.geny = np.zeros(shape = numPoints)

for i in range(0,numPoints):

self.genx[i][0] = 1

self.genx[i][1] = i

self.geny[i] = (i + bias) + random.uniform(0,1) * variance

def gradientDescent(self):

xTrans = self.genx.transpose() #

i = 0

while i < self.numIterations:

hypothesis = np.dot(self.genx,self.theta)

loss = hypothesis - self.geny

#record the cost

self.cost.append(np.sum(loss ** 2))

#calculate the gradient

gradient = np.dot(xTrans,loss)

#updata, gradientDescent

self.theta = self.theta - self.alpha * gradient

i = i + 1

def show(self):

print 'yes'

if __name__ == "__main__":

c = dataMinning('c:\\city.txt','c:\\st.txt',np.ones(2),100000,0.000005)

c.genData(100,25,10)

c.gradientDescent()

cx = range(len(c.cost))

plt.figure(1)

plt.plot(cx,c.cost)

plt.ylim(0,25000)

plt.figure(2)

plt.plot(c.genx[:,1],c.geny,'b.')

x = np.arange(0,100,0.1)

y = x * c.theta[1] + c.theta[0]

plt.plot(x,y)

plt.margins(0.2)

plt.show()

图1. 迭代过程中的误差cost

图2. 数据散点图和解直线

总结

Python算法输出1-9数组形成的结果为100的所有运算式

python中实现k-means聚类算法详解

Python编程实现粒子群算法(PSO)详解

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

以上是 Python编程实现线性回归和批量梯度下降法代码实例 的全部内容, 来源链接: utcz.com/z/357467.html

回到顶部