Python+OpenCV目标跟踪实现基本的运动检测

目标跟踪是对摄像头视频中的移动目标进行定位的过程,有着非常广泛的应用。实时目标跟踪是许多计算机视觉应用的重要任务,如监控、基于感知的用户界面、增强现实、基于对象的视频压缩以及辅助驾驶等。

有很多实现视频目标跟踪的方法,当跟踪所有移动目标时,帧之间的差异会变的有用;当跟踪视频中移动的手时,基于皮肤颜色的均值漂移方法是最好的解决方案;当知道跟踪对象的一方面时,模板匹配是不错的技术。

本文代码是做一个基本的运动检测

考虑的是“背景帧”与其它帧之间的差异

这种方法检测结果还是挺不错的,但是需要提前设置背景帧,如果是在室外,光线的变化就会引起误检测,还是很有局限性的。

import cv2

import numpy as np

camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头

# 判断视频是否打开

if (camera.isOpened()):

print('Open')

else:

print('摄像头未打开')

# 测试用,查看视频size

size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),

int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))

print('size:'+repr(size))

es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 4))

kernel = np.ones((5, 5), np.uint8)

background = None

while True:

# 读取视频流

grabbed, frame_lwpCV = camera.read()

# 对帧进行预处理,先转灰度图,再进行高斯滤波。

# 用高斯滤波进行模糊处理,进行处理的原因:每个输入的视频都会因自然震动、光照变化或者摄像头本身等原因而产生噪声。对噪声进行平滑是为了避免在运动和跟踪时将其检测出来。

gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY)

gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)

# 将第一帧设置为整个输入的背景

if background is None:

background = gray_lwpCV

continue

# 对于每个从背景之后读取的帧都会计算其与北京之间的差异,并得到一个差分图(different map)。

# 还需要应用阈值来得到一幅黑白图像,并通过下面代码来膨胀(dilate)图像,从而对孔(hole)和缺陷(imperfection)进行归一化处理

diff = cv2.absdiff(background, gray_lwpCV)

diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1] # 二值化阈值处理

diff = cv2.dilate(diff, es, iterations=2) # 形态学膨胀

# 显示矩形框

image, contours, hierarchy = cv2.findContours(diff.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 该函数计算一幅图像中目标的轮廓

for c in contours:

if cv2.contourArea(c) < 1500: # 对于矩形区域,只显示大于给定阈值的轮廓,所以一些微小的变化不会显示。对于光照不变和噪声低的摄像头可不设定轮廓最小尺寸的阈值

continue

(x, y, w, h) = cv2.boundingRect(c) # 该函数计算矩形的边界框

cv2.rectangle(frame_lwpCV, (x, y), (x+w, y+h), (0, 255, 0), 2)

cv2.imshow('contours', frame_lwpCV)

cv2.imshow('dis', diff)

key = cv2.waitKey(1) & 0xFF

# 按'q'健退出循环

if key == ord('q'):

break

# When everything done, release the capture

camera.release()

cv2.destroyAllWindows()

以上是 Python+OpenCV目标跟踪实现基本的运动检测 的全部内容, 来源链接: utcz.com/z/357428.html

回到顶部