python实现泊松图像融合

本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下

```

from __future__ import division

import numpy as np

import scipy.fftpack

import scipy.ndimage

import cv2

import matplotlib.pyplot as plt

#sns.set(style="darkgrid")

def DST(x):

"""

Converts Scipy's DST output to Matlab's DST (scaling).

"""

X = scipy.fftpack.dst(x,type=1,axis=0)

return X/2.0

def IDST(X):

"""

Inverse DST. Python -> Matlab

"""

n = X.shape[0]

x = np.real(scipy.fftpack.idst(X,type=1,axis=0))

return x/(n+1.0)

def get_grads(im):

"""

return the x and y gradients.

"""

[H,W] = im.shape

Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32')

j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)

Dx[j,k] = im[j,k+1] - im[j,k]

Dy[j,k] = im[j+1,k] - im[j,k]

return Dx,Dy

def get_laplacian(Dx,Dy):

"""

return the laplacian

"""

[H,W] = Dx.shape

Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W))

j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)

Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k]

Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k]

return Dxx+Dyy

def poisson_solve(gx,gy,bnd):

# convert to double:

gx = gx.astype('float32')

gy = gy.astype('float32')

bnd = bnd.astype('float32')

H,W = bnd.shape

L = get_laplacian(gx,gy)

# set the interior of the boundary-image to 0:

bnd[1:-1,1:-1] = 0

# get the boundary laplacian:

L_bp = np.zeros_like(L)

L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] \

+ bnd[1:-1,2:] + bnd[1:-1,0:-2] \

+ bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x

L = L - L_bp

L = L[1:-1,1:-1]

# compute the 2D DST:

L_dst = DST(DST(L).T).T #first along columns, then along rows

# normalize:

[xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1))

D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2)

L_dst = L_dst/D

img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns

img = bnd.copy()

img[1:-1,1:-1] = img_interior

return img

def blit_images(im_top,im_back,scale_grad=1.0,mode='max'):

"""

combine images using poission editing.

IM_TOP and IM_BACK should be of the same size.

"""

assert np.all(im_top.shape==im_back.shape)

im_top = im_top.copy().astype('float32')

im_back = im_back.copy().astype('float32')

im_res = np.zeros_like(im_top)

# frac of gradients which come from source:

for ch in xrange(im_top.shape[2]):

ims = im_top[:,:,ch]

imd = im_back[:,:,ch]

[gxs,gys] = get_grads(ims)

[gxd,gyd] = get_grads(imd)

gxs *= scale_grad

gys *= scale_grad

gxs_idx = gxs!=0

gys_idx = gys!=0

# mix the source and target gradients:

if mode=='max':

gx = gxs.copy()

gxm = (np.abs(gxd))>np.abs(gxs)

gx[gxm] = gxd[gxm]

gy = gys.copy()

gym = np.abs(gyd)>np.abs(gys)

gy[gym] = gyd[gym]

# get gradient mixture statistics:

f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6)

f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6)

if min(f_gx, f_gy) <= 0.35:

m = 'max'

if scale_grad > 1:

m = 'blend'

return blit_images(im_top, im_back, scale_grad=1.5, mode=m)

elif mode=='src':

gx,gy = gxd.copy(), gyd.copy()

gx[gxs_idx] = gxs[gxs_idx]

gy[gys_idx] = gys[gys_idx]

elif mode=='blend': # from recursive call:

# just do an alpha blend

gx = gxs+gxd

gy = gys+gyd

im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255)

return im_res.astype('uint8')

def contiguous_regions(mask):

"""

return a list of (ind0, ind1) such that mask[ind0:ind1].all() is

True and we cover all such regions

"""

in_region = None

boundaries = []

for i, val in enumerate(mask):

if in_region is None and val:

in_region = i

elif in_region is not None and not val:

boundaries.append((in_region, i))

in_region = None

if in_region is not None:

boundaries.append((in_region, i+1))

return boundaries

if __name__=='__main__':

"""

example usage:

"""

import seaborn as sns

im_src = cv2.imread('../f01006.jpg').astype('float32')

im_dst = cv2.imread('../f01006-5.jpg').astype('float32')

mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0)

# print mu

sz = (1920,1080)

im_src = cv2.resize(im_src,sz)

im_dst = cv2.resize(im_dst,sz)

im0 = im_dst[:,:,0] > 100

im_dst[im0,:] = im_src[im0,:]

im_dst[~im0,:] = 50

im_dst = cv2.GaussianBlur(im_dst,(5,5),5)

im_alpha = 0.8*im_dst + 0.2*im_src

# plt.imshow(im_dst)

# plt.show()

im_res = blit_images(im_src,im_dst)

import scipy

scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8'))

scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8'))

scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8'))

im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]

im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]

im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]

# plt.imshow(im_alpha_L)

# plt.show()

for i in xrange(500,im_alpha_L.shape[1],5):

l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1]

l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1]

l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1]

with sns.axes_style("darkgrid"):

plt.subplot(2,1,2)

#plt.plot(l_alpha,label='alpha')

plt.plot(l_poisson,label='poisson')

plt.hold(True)

plt.plot(l_actual,label='actual')

plt.legend()

# find "text regions":

is_txt = ~im0[i,:]

t_loc = contiguous_regions(is_txt)

ax = plt.gca()

for b0,b1 in t_loc:

ax.axvspan(b0, b1, facecolor='red', alpha=0.1)

with sns.axes_style("white"):

plt.subplot(2,1,1)

plt.imshow(im_alpha[:,:,::-1].astype('uint8'))

plt.hold(True)

plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r')

plt.axis('image')

plt.show()

plt.subplot(1,3,1)

plt.imshow(im_src[:,:,::-1].astype('uint8'))

plt.subplot(1,3,2)

plt.imshow(im_alpha[:,:,::-1].astype('uint8'))

plt.subplot(1,3,3)

plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR

plt.show()

以上是 python实现泊松图像融合 的全部内容, 来源链接: utcz.com/z/354708.html

回到顶部