Python 做曲线拟合和求积分的方法

这是一个由加油站油罐传感器测量的油罐高度数据和出油体积,根据体积和高度的倒数,用截面积来描述油罐形状,求出拟合曲线,再用标准数据,求积分来验证拟合曲线效果和误差的一个小项目。 主要的就是首先要安装Anaconda  python库,然后来运用这些数学工具。

###最小二乘法试验###

import numpy as np

import pymysql

from scipy.optimize import leastsq

from scipy import integrate

###绘图,看拟合效果###

import matplotlib.pyplot as plt

from sympy import *

path='E:\PythonProgram\oildata.txt'

lieh0 =[] #初始第一列,油管高度

liev1 =[] #初始第二列,油枪记录的体积

h_median =[] # 高度相邻中位数

h_subtract =[] #相邻高度作差

v_subtract =[] #相邻体积作差

select_h_subtr =[] #筛选的高度作差 ########

select_v_subtr =[] #筛选的体积作差

VdtH=[] #筛选的V 和 t 的 倒数。

def loadData(Spath,lie0,lie1):

with open(Spath,'r') as f0:

for i in f0:

tmp=i.split()

lie0.append(float(tmp[0]))

lie1.append(float(tmp[2]))

print ("source lie0",len(lie0))

def connectMySQL():

db = pymysql.connect(host='10.**.**.**', user='root', passwd='***', db="zabbix", charset="utf8") # 校罐

cur = db.cursor()

try:

# 查询

cur.execute("SELECT * FROM station_snapshot limit 10 ")

for row in cur.fetchall():

# print(row)

id = row[0]

snapshot_id = row[1]

DateTime = row[13]

attr1V = row[5]

attr2H = row[6]

print("id=%d ,snapshot_id=%s,DateTime=%s,attr1V =%s, attr2H=%s ",

(id, snapshot_id, DateTime, attr1V, attr2H))

except:

print("Error: unable to fecth data of station_stock")

try:

cur.execute("SELECT * FROM can_stock limit 5");

for row in cur.fetchall():

# print(row)

stockid = row[0]

stationid = row[1]

DateTime = row[4]

Volume = row[5]

Height = row[8]

print("stockid=%d ,stationid=%s,DateTime=%s,Volume =%f, Height=%f ",

(stockid, stationid, DateTime, Volume, Height))

except:

print("Error: unable to fecth data of can_snapshot")

cur.close()

db.close()

def formatData(h_med,h_subtr,v_subtr):

lh0 = lieh0[:]

del lh0[0]

print("lh0 size(): ",len(lh0))

lh1 =lieh0[:]

del lh1[len(lh1)-1]

print("lh1 size() : ",len(lh1))

lv0 =liev1[:]

del lv0[0]

#print (liev1)

print ("Souce liev1 size() : ",len(liev1))

print ("lv1 size() :",len(lv0))

"""

lv1 =liev1[:]

del lv1[len(lv1)-1]

print("lv1 size(): ",len(lv1))

"""

h_med[:] =[(x+y)/2 for x,y in zip(lh0,lh1)] ###采样点(Xi,Yi)###

print("h_med size() : ", len(h_med))

h_subtr[:] = [(y-x) for x,y in zip(lh0,lh1)]

print("h_subtr size() : ", len(h_subtr))

# v_subtr[:] = [(y-x) for x,y in zip(lv0,lv1)]

v_subtr[:] = lv0

print("v_subtr size() : ", len(v_subtr))

def removeBadPoint(h_med,h_sub,v_sub):

for val in h_sub:

position=h_sub.index(val)

if 0.01 > val > -0.01:

del h_sub[position]

del h_med[position]

del v_sub[position]

v_dt_h_ay = [(y/x) for x, y in zip(h_sub, v_sub)]

return v_dt_h_ay

def selectRightPoint(h_med,h_subtr,v_dt_h_ay):

for val in v_dt_h_ay:

pos = v_dt_h_ay.index(val)

if val > 20 :

del v_dt_h_ay[pos]

del h_med[pos]

del h_subtr[pos]

for val in v_dt_h_ay:

ptr = v_dt_h_ay.index(val)

if val < 14:

del v_dt_h_ay[ptr]

del h_med[ptr]

del h_subtr[ptr]

def writeFile(h_mp, v_dt_h):

s='\n'.join(str(num)[1:-1] for num in h_mp)

v='\n'.join(str(vdt)[1:-1] for vdt in v_dt_h)

open(r'h_2.txt','w').write(s)

open(r'v_dt_h.txt','w').write(v)

print("write h_median: ",len(h_mp))

# print("V_dt also is (y-x) : ",v_dt_h,end="\n")

print("Write V_dt_h : ",len(v_dt_h))

# file=open('data.txt','w')

# file.write(str(h_mp));

# file.close

def integralCalculate(coeff,xspace):

vCalcute =[]

x = Symbol('x')

a, b, c, d = coeff[0]

y = a * x ** 3 + b * x ** 2 + c * x + d

i=0

while (i< len(xspace)-1) :

m = integrate(y, (x, xspace[i], xspace[i+1]))

vCalcute.append(abs(m))

i=i+1

print("求导结果:",vCalcute)

print("求导长度 len(VCalcute): ",len(vCalcute))

return vCalcute

###需要拟合的函数func及误差error###

def func(p,x):

a,b,c,d=p

return a*x**3+b*x**2+c*x+d #指明待拟合的函数的形状,设定的拟合函数。

def error(p,x,y):

return func(p,x)-y #x、y都是列表,故返回值也是个列表

def leastSquareFitting(h_mp,v_dt_hl):

p0=[1,2,6,10] #a,b,c 的假设初始值,随着迭代会越来越小

#print(error(p0,h_mp,v_dt_h,"cishu")) #目标是让error 不断减小

#s="Test the number of iteration" #试验最小二乘法函数leastsq得调用几次error函数才能找到使得均方误差之和最小的a~c

Para=leastsq(error,p0,args=(h_mp,v_dt_hl)) #把error函数中除了p以外的参数打包到args中

a,b,c,d=Para[0] #leastsq 返回的第一个值是a,b,c 的求解结果,leastsq返回类型相当于c++ 中的tuple

print(" a=",a," b=",b," c=",c," d=",d)

plt.figure(figsize=(8,6))

plt.scatter(h_mp,v_dt_hl,color="red",label="Sample Point",linewidth=3) #画样本点

x=np.linspace(200,2200,1000)

y=a*x**3+b*x**2+c*x+d

integralCalculate(Para,h_subtract)

plt.plot(x,y,color="orange",label="Fitting Curve",linewidth=2) #画拟合曲线

# plt.plot(h_mp, v_dt_hl,color="blue", label='Origin Line',linewidth=1) #画连接线

plt.legend()

plt.show()

def freeParameterFitting(h_mp,v_dt_hl):

z1 = np.polyfit(h_mp, v_dt_hl, 6) # 第一个拟合,自由度为6

# 生成多项式对象

p1 = np.poly1d(z1)

print("Z1:")

print(z1)

print("P1:")

print(p1)

print("\n")

x = np.linspace(400, 1700, 1000)

plt.plot(h_mp, v_dt_hl, color="blue", label='Origin Line', linewidth=1) # 画连接线

plt.plot(x, p1(x), 'gv--', color="black", label='Poly Fitting Line(deg=6)', linewidth=1)

plt.legend()

plt.show()

def main():

loadData(path, lieh0, liev1)

connectMySQL() # 读取oildata数据库

formatData(h_median, h_subtract, v_subtract)

# 去除被除数为0对应的点,并得到v 和 h 求导 值的列表

VdtH[:] = removeBadPoint(h_median, h_subtract, v_subtract)

print("h_median1:", len(h_median))

print("VdtH1 : ", len(VdtH))

# 赛选数据,去除异常点

selectRightPoint(h_median, h_subtract, VdtH)

print("h_median2:", len(h_median))

print("h_subtract: ", len(h_subtract))

print("VdtH2 : ", len(VdtH))

h_mp = np.array(h_median)

v_dt_h = np.array(VdtH)

writeFile(h_mp, v_dt_h)

# 最小二乘法作图

leastSquareFitting(h_mp, v_dt_h)

# 多项式自由参数法作图

freeParameterFitting(h_mp, v_dt_h)

if __name__ == '__main__':

main()

以上这篇Python 做曲线拟合和求积分的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Python 做曲线拟合和求积分的方法 的全部内容, 来源链接: utcz.com/z/353008.html

回到顶部