python的常用模块之collections模块详解

认识模块 

什么是模块?

常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。

但其实import加载的模块分为四个通用类别: 

   1 使用python编写的代码(.py文件)

   2 已被编译为共享库或DLL的C或C++扩展

   3 包好一组模块的包

   4 使用C编写并链接到python解释器的内置模块

为何要使用模块?

如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,

常用模块 

1. collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

 2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

用法:namedtuple('名称', [属性list]):

>>> from collections import namedtuple

>>> Point = namedtuple('Point', ['x', 'y'])

>>> p = Point(1, 2)

>>> p.x

1

>>> p.y

2

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

from collections import namedtuple

Cirle = namedtuple("Cirle",['x','y','z'])

c = Cirle(4,5,6)

print(c.x,c.y,c.z)

OutPut:

4 5 6

2. deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque

>>> q = deque(['a', 'b', 'c'])

>>> q.append('x')

>>> q.appendleft('y')

>>> q

deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

from collections import deque

dq = deque([1,2])

dq.append('a') # 从后面放数据 [1,2,'a']

dq.appendleft('b') # 从前面放数据 ['b',1,2,'a']

dq.insert(2,3) #['b',1,3,2,'a']

print(dq.pop()) # 从后面取数据

print(dq.pop()) # 从后面取数据

print(dq.popleft()) # 从前面取数据

print(dq)

Output:

a

2

b

deque([1, 3])

3. OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict:

>>> from collections import OrderedDict

>>> d = dict([('a', 1), ('b', 2), ('c', 3)])

>>> d # dict的Key是无序的

{'a': 1, 'c': 3, 'b': 2}

>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])

>>> od # OrderedDict的Key是有序的

OrderedDict([('a', 1), ('b', 2), ('c', 3)])

#有序字典

from collections import OrderedDict

od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])

print(od) # OrderedDict的Key是有序的

print(od['a'])

for k in od:

print(k)

OutPut:

OrderedDict([('a', 1), ('b', 2), ('c', 3)])

1

a

b

c

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序

4. defaultdict

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:

>>> from collections import defaultdict

>>> dd = defaultdict(lambda: 'N/A')

>>> dd['key1'] = 'abc'

>>> dd['key1'] # key1存在

'abc'

>>> dd['key2'] # key2不存在,返回默认值

'N/A'

5. Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')

print c

输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})

创建

下面的代码说明了Counter类创建的四种方法:

Counter类的创建 :

>>> c = Counter() # 创建一个空的Counter类

>>> c = Counter('gallahad') # 从一个可iterable对象(list、tuple、dict、字符串等)创建

>>> c = Counter({'a': 4, 'b': 2}) # 从一个字典对象创建

>>> c = Counter(a=4, b=2) # 从一组键值对创建

计数值的访问与缺失的键

当所访问的键不存在时,返回0,而不是KeyError;否则返回它的计数。

计数值的访问

>>> c = Counter("abcdefgab")

>>> c["a"]

2

>>> c["c"]

1

>>> c["h"]

0

计数器的更新(update和subtract)

可以使用一个iterable对象或者另一个Counter对象来更新键值。

计数器的更新包括增加和减少两种。其中,增加使用update()方法:

计数器的更新(update)

>>> c = Counter('which')

>>> c.update('witch') # 使用另一个iterable对象更新

>>> c['h']

3

>>> d = Counter('watch')

>>> c.update(d) # 使用另一个Counter对象更新

>>> c['h']

4

减少则使用subtract()方法:

计数器的更新(subtract)

>>> c = Counter('which')

>>> c.subtract('witch') # 使用另一个iterable对象更新

>>> c['h']

1

>>> d = Counter('watch')

>>> c.subtract(d) # 使用另一个Counter对象更新

>>> c['a']

-1

键的修改和删除

当计数值为0时,并不意味着元素被删除,删除元素应当使用del。

>>> c = Counter("abcdcba")

>>> c

Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})

>>> c["b"] = 0

>>> c

Counter({'a': 2, 'c': 2, 'd': 1, 'b': 0})

>>> del c["a"]

>>> c

Counter({'c': 2, 'b': 2, 'd': 1})

elements()

返回一个迭代器。元素被重复了多少次,在该迭代器中就包含多少个该元素。元素排列无确定顺序,个数小于1的元素不被包含。

elements()方法

>>> c = Counter(a=4, b=2, c=0, d=-2)

>>> list(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']

most_common([n])

返回一个TopN列表。如果n没有被指定,则返回所有元素。当多个元素计数值相同时,排列是无确定顺序的。

most_common()方法

>>> c = Counter('abracadabra')

>>> c.most_common()

[('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)]

>>> c.most_common(3)

[('a', 5), ('r', 2), ('b', 2)]

浅拷贝copy

>>> c = Counter("abcdcba")

>>> c

Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})

>>> d = c.copy()

>>> d

Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})

算术和集合操作

+、-、&、|操作也可以用于Counter。其中&和|操作分别返回两个Counter对象各元素的最小值和最大值。需要注意的是,得到的Counter对象将删除小于1的元素。

Counter对象的算术和集合操作

>>> c = Counter(a=3, b=1)

>>> d = Counter(a=1, b=2)

>>> c + d # c[x] + d[x]

Counter({'a': 4, 'b': 3})

>>> c - d # subtract(只保留正数计数的元素)

Counter({'a': 2})

>>> c & d # 交集: min(c[x], d[x])

Counter({'a': 1, 'b': 1})

>>> c | d # 并集: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

其他常用操作

下面是一些Counter类的常用操作,来源于Python官方文档

Counter类常用操作

sum(c.values()) # 所有计数的总数

c.clear() # 重置Counter对象,注意不是删除

list(c) # 将c中的键转为列表

set(c) # 将c中的键转为set

dict(c) # 将c中的键值对转为字典

c.items() # 转为(elem, cnt)格式的列表

Counter(dict(list_of_pairs)) # 从(elem, cnt)格式的列表转换为Counter类对象

c.most_common()[:-n:-1] # 取出计数最少的n个元素

c += Counter() # 移除0和负值

以上是 python的常用模块之collections模块详解 的全部内容, 来源链接: utcz.com/z/350903.html

回到顶部