用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

听说pytorch使用比TensorFlow简单,加之pytorch现已支持windows,所以今天装了pytorch玩玩,第一件事还是写了个简单的CNN在MNIST上实验,初步体验的确比TensorFlow方便。

参考代码(在莫烦python的教程代码基础上修改)如下:

import torch

import torch.nn as nn

from torch.autograd import Variable

import torch.utils.data as Data

import torchvision

import time

#import matplotlib.pyplot as plt

torch.manual_seed(1)

EPOCH = 1

BATCH_SIZE = 50

LR = 0.001

DOWNLOAD_MNIST = False

if_use_gpu = 1

# 获取训练集dataset

training_data = torchvision.datasets.MNIST(

root='./mnist/', # dataset存储路径

train=True, # True表示是train训练集,False表示test测试集

transform=torchvision.transforms.ToTensor(), # 将原数据规范化到(0,1)区间

download=DOWNLOAD_MNIST,

)

# 打印MNIST数据集的训练集及测试集的尺寸

print(training_data.train_data.size())

print(training_data.train_labels.size())

# torch.Size([60000, 28, 28])

# torch.Size([60000])

#plt.imshow(training_data.train_data[0].numpy(), cmap='gray')

#plt.title('%i' % training_data.train_labels[0])

#plt.show()

# 通过torchvision.datasets获取的dataset格式可直接可置于DataLoader

train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE,

shuffle=True)

# 获取测试集dataset

test_data = torchvision.datasets.MNIST(

root='./mnist/', # dataset存储路径

train=False, # True表示是train训练集,False表示test测试集

transform=torchvision.transforms.ToTensor(), # 将原数据规范化到(0,1)区间

download=DOWNLOAD_MNIST,

)

# 取前全部10000个测试集样本

test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1).float(), requires_grad=False)

#test_x = test_x.cuda()

## (~, 28, 28) to (~, 1, 28, 28), in range(0,1)

test_y = test_data.test_labels

#test_y = test_y.cuda()

class CNN(nn.Module):

def __init__(self):

super(CNN, self).__init__()

self.conv1 = nn.Sequential( # (1,28,28)

nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5,

stride=1, padding=2), # (16,28,28)

# 想要con2d卷积出来的图片尺寸没有变化, padding=(kernel_size-1)/2

nn.ReLU(),

nn.MaxPool2d(kernel_size=2) # (16,14,14)

)

self.conv2 = nn.Sequential( # (16,14,14)

nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14)

nn.ReLU(),

nn.MaxPool2d(2) # (32,7,7)

)

self.out = nn.Linear(32*7*7, 10)

def forward(self, x):

x = self.conv1(x)

x = self.conv2(x)

x = x.view(x.size(0), -1) # 将(batch,32,7,7)展平为(batch,32*7*7)

output = self.out(x)

return output

cnn = CNN()

if if_use_gpu:

cnn = cnn.cuda()

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)

loss_function = nn.CrossEntropyLoss()

for epoch in range(EPOCH):

start = time.time()

for step, (x, y) in enumerate(train_loader):

b_x = Variable(x, requires_grad=False)

b_y = Variable(y, requires_grad=False)

if if_use_gpu:

b_x = b_x.cuda()

b_y = b_y.cuda()

output = cnn(b_x)

loss = loss_function(output, b_y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if step % 100 == 0:

print('Epoch:', epoch, '|Step:', step,

'|train loss:%.4f'%loss.data[0])

duration = time.time() - start

print('Training duation: %.4f'%duration)

cnn = cnn.cpu()

test_output = cnn(test_x)

pred_y = torch.max(test_output, 1)[1].data.squeeze()

accuracy = sum(pred_y == test_y) / test_y.size(0)

print('Test Acc: %.4f'%accuracy)

以上这篇用Pytorch训练CNN(数据集MNIST,使用GPU的方法)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 用Pytorch训练CNN(数据集MNIST,使用GPU的方法) 的全部内容, 来源链接: utcz.com/z/349467.html

回到顶部