python 实现表情识别
表情识别
表情识别支持7种表情类型,生气、厌恶、恐惧、开心、难过、惊喜、平静等。
实现思路
使用OpenCV识别图片中的脸,在使用keras进行表情识别。
效果预览
实现代码
与《性别识别》相似,本文表情识别也是使用keras实现的,和性别识别相同,型数据使用的是oarriaga/face_classification的,代码如下:
#coding=utf-8
#表情识别
import cv2
from keras.models import load_model
import numpy as np
import chineseText
import datetime
startTime = datetime.datetime.now()
emotion_classifier = load_model(
'classifier/emotion_models/simple_CNN.530-0.65.hdf5')
endTime = datetime.datetime.now()
print(endTime - startTime)
emotion_labels = {
0: '生气',
1: '厌恶',
2: '恐惧',
3: '开心',
4: '难过',
5: '惊喜',
6: '平静'
}
img = cv2.imread("img/emotion/emotion.png")
face_classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(40, 40))
color = (255, 0, 0)
for (x, y, w, h) in faces:
gray_face = gray[(y):(y + h), (x):(x + w)]
gray_face = cv2.resize(gray_face, (48, 48))
gray_face = gray_face / 255.0
gray_face = np.expand_dims(gray_face, 0)
gray_face = np.expand_dims(gray_face, -1)
emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
emotion = emotion_labels[emotion_label_arg]
cv2.rectangle(img, (x + 10, y + 10), (x + h - 10, y + w - 10),
(255, 255, 255), 2)
img = chineseText.cv2ImgAddText(img, emotion, x + h * 0.3, y, color, 20)
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
以上是 python 实现表情识别 的全部内容, 来源链接: utcz.com/z/349251.html