C#实现矩阵加法、取负、数乘、乘法的方法

本文实例讲述了C#实现矩阵加法、取负、数乘、乘法的方法。分享给大家供大家参考。具体如下:

1.几个基本函数

1)判断一个二维数组是否为矩阵:如果每行的列数都相等则是矩阵,没有元素的二维数组是矩阵

/// <summary>

/// 判断一个二维数组是否为矩阵

/// </summary>

/// <param name="matrix">二维数组</param>

/// <returns>true:是矩阵 false:不是矩阵</returns>

private static bool isMatrix(double[][] matrix)

{

//空矩阵是矩阵

if (matrix.Length < 1) return true;

//不同行列数如果不相等,则不是矩阵

int count = matrix[0].Length;

for (int i = 1; i < matrix.Length; i++)

{

if (matrix[i].Length != count)

{

return false;

}

}

//各行列数相等,则是矩阵

return true;

}

2)计算一个矩阵的行数和列数:就是计算两个维度的Length属性

/// <summary>

/// 计算一个矩阵的行数和列数

/// </summary>

/// <param name="matrix">矩阵</param>

/// <returns>数组:行数、列数</returns>

private static int[] MatrixCR(double[][] matrix)

{

//接收到的参数不是矩阵则报异常

if (!isMatrix(matrix))

{

throw new Exception("接收到的参数不是矩阵");

}

//空矩阵行数列数都为0

if (!isMatrix(matrix) || matrix.Length == 0)

{

return new int[2] { 0, 0 };

}

return new int[2] { matrix.Length, matrix[0].Length };

}

3)向控制台打印矩阵:注意,如果前后都是两个char类型的量,则运算符+会把前后两个字符转化为整数相加,而不会将前后字符视为字符串连接

/// <summary>

/// 打印矩阵

/// </summary>

/// <param name="matrix">待打印矩阵</param>

private static void PrintMatrix(double[][] matrix)

{

for (int i = 0; i < matrix.Length; i++)

{

for (int j = 0; j < matrix[i].Length; j++)

{

Console.Write(matrix[i][j] + "\t");

//注意不能写为:Console.Write(matrix[i][j] + '\t');

}

Console.WriteLine();

}

}

2.矩阵加法

/// <summary>

/// 矩阵加法

/// </summary>

/// <param name="matrix1">矩阵1</param>

/// <param name="matrix2">矩阵2</param>

/// <returns>和</returns>

private static double[][] MatrixAdd(double[][] matrix1, double[][] matrix2)

{

//矩阵1和矩阵2须为同型矩阵

if (MatrixCR(matrix1)[0] != MatrixCR(matrix2)[0] ||

MatrixCR(matrix1)[1] != MatrixCR(matrix2)[1])

{

throw new Exception("不同型矩阵无法进行加法运算");

}

//生成一个与matrix1同型的空矩阵

double[][] result = new double[matrix1.Length][];

for (int i = 0; i < result.Length; i++)

{

result[i] = new double[matrix1[i].Length];

}

//矩阵加法:把矩阵2各元素值加到矩阵1上,返回矩阵1

for (int i = 0; i < result.Length; i++)

{

for (int j = 0; j < result[i].Length; j++)

{

result[i][j] = matrix1[i][j] + matrix2[i][j];

}

}

return result;

}

3.矩阵取负

/// <summary>

/// 矩阵取负

/// </summary>

/// <param name="matrix">矩阵</param>

/// <returns>负矩阵</returns>

private static double[][] NegtMatrix(double[][] matrix)

{

//合法性检查

if (!isMatrix(matrix))

{

throw new Exception("传入的参数并不是一个矩阵");

}

//参数为空矩阵则返回空矩阵

if (matrix.Length == 0)

{

return new double[][] { };

}

//生成一个与matrix同型的空矩阵

double[][] result = new double[matrix.Length][];

for (int i = 0; i < result.Length; i++)

{

result[i] = new double[matrix[i].Length];

}

//矩阵取负:各元素取相反数

for (int i = 0; i < result.Length; i++)

{

for (int j = 0; j < result[0].Length; j++)

{

result[i][j] = -matrix[i][j];

}

}

return result;

}

4.矩阵数乘

/// <summary>

/// 矩阵数乘

/// </summary>

/// <param name="matrix">矩阵</param>

/// <param name="num">常数</param>

/// <returns>积</returns>

private static double[][] MatrixMult(double[][] matrix, double num)

{

//合法性检查

if (!isMatrix(matrix))

{

throw new Exception("传入的参数并不是一个矩阵");

}

//参数为空矩阵则返回空矩阵

if (matrix.Length == 0)

{

return new double[][] { };

}

//生成一个与matrix同型的空矩阵

double[][] result = new double[matrix.Length][];

for (int i = 0; i < result.Length; i++)

{

result[i] = new double[matrix[i].Length];

}

//矩阵数乘:用常数依次乘以矩阵各元素

for (int i = 0; i < result.Length; i++)

{

for (int j = 0; j < result[0].Length; j++)

{

result[i][j] = matrix[i][j] * num;

}

}

return result;

}

5.矩阵乘法

/// <summary>

/// 矩阵乘法

/// </summary>

/// <param name="matrix1">矩阵1</param>

/// <param name="matrix2">矩阵2</param>

/// <returns>积</returns>

private static double[][] MatrixMult(double[][] matrix1, double[][] matrix2)

{

//合法性检查

if (MatrixCR(matrix1)[1] != MatrixCR(matrix2)[0])

{

throw new Exception("matrix1 的列数与 matrix2 的行数不想等");

}

//矩阵中没有元素的情况

if (matrix1.Length == 0 || matrix2.Length == 0)

{

return new double[][] { };

}

//matrix1是m*n矩阵,matrix2是n*p矩阵,则result是m*p矩阵

int m = matrix1.Length, n = matrix2.Length, p = matrix2[0].Length;

double[][] result = new double[m][];

for (int i = 0; i < result.Length; i++)

{

result[i] = new double[p];

}

//矩阵乘法:c[i,j]=Sigma(k=1→n,a[i,k]*b[k,j])

for (int i = 0; i < m; i++)

{

for (int j = 0; j < p; j++)

{

//对乘加法则

for (int k = 0; k < n; k++)

{

result[i][j] += (matrix1[i][k] * matrix2[k][j]);

}

}

}

return result;

}

6.函数调用示例

1)Main函数代码

static void Main(string[] args)

{

//示例矩阵

double[][] matrix1 = new double[][]

{

new double[] { 1, 2, 3 },

new double[] { 4, 5, 6 },

new double[] { 7, 8, 9 }

};

double[][] matrix2 = new double[][]

{

new double[] { 2, 3, 4 },

new double[] { 5, 6, 7 },

new double[] { 8, 9, 10 }

};

//矩阵加法

PrintMatrix(MatrixAdd(matrix1, matrix2));

Console.WriteLine();

//矩阵取负

PrintMatrix(NegtMatrix(matrix1));

Console.WriteLine();

//矩阵数乘

PrintMatrix(MatrixMult(matrix1, 3));

Console.WriteLine();

//矩阵乘法

PrintMatrix(MatrixMult(

new double[][] {

new double[]{ 4, -1, 2 },

new double[]{ 1, 1, 0 },

new double[]{ 0, 3, 1 }},

new double[][] {

new double[]{ 1, 2 },

new double[]{ 0, 1 },

new double[]{ 3, 0 }}));

Console.WriteLine();

Console.ReadLine();

}

2)示例运行结果

希望本文所述对大家的C#程序设计有所帮助。

以上是 C#实现矩阵加法、取负、数乘、乘法的方法 的全部内容, 来源链接: utcz.com/z/346924.html

回到顶部