使用sklearn之LabelEncoder将Label标准化的方法

LabelEncoder可以将标签分配一个0—n_classes-1之间的编码

将各种标签分配一个可数的连续编号:

>>> from sklearn import preprocessing

>>> le = preprocessing.LabelEncoder()

>>> le.fit([1, 2, 2, 6])

LabelEncoder()

>>> le.classes_

array([1, 2, 6])

>>> le.transform([1, 1, 2, 6]) # Transform Categories Into Integers

array([0, 0, 1, 2], dtype=int64)

>>> le.inverse_transform([0, 0, 1, 2]) # Transform Integers Into Categories

array([1, 1, 2, 6])

>>> le = preprocessing.LabelEncoder()

>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])

LabelEncoder()

>>> list(le.classes_)

['amsterdam', 'paris', 'tokyo']

>>> le.transform(["tokyo", "tokyo", "paris"]) # Transform Categories Into Integers

array([2, 2, 1], dtype=int64)

>>> list(le.inverse_transform([2, 2, 1])) #Transform Integers Into Categories

['tokyo', 'tokyo', 'paris']

将DataFrame中的所有ID标签转换成连续编号:

from sklearn.preprocessing import LabelEncoder

import numpy as np

import pandas as pd

df=pd.read_csv('testdata.csv',sep='|',header=None)

0 1 2 3 4 5

0 37 52 55 50 38 54

1 17 32 20 9 6 48

2 28 10 56 51 45 16

3 27 49 41 30 53 19

4 44 29 8 1 46 13

5 11 26 21 14 7 33

6 0 39 22 33 35 43

7 18 15 47 5 25 34

8 23 2 4 9 3 31

9 12 57 36 40 42 24

le = LabelEncoder()

le.fit(np.unique(df.values))

df.apply(le.transform)

0 1 2 3 4 5

0 37 52 55 50 38 54

1 17 32 20 9 6 48

2 28 10 56 51 45 16

3 27 49 41 30 53 19

4 44 29 8 1 46 13

5 11 26 21 14 7 33

6 0 39 22 33 35 43

7 18 15 47 5 25 34

8 23 2 4 9 3 31

9 12 57 36 40 42 24

将DataFrame中的每一行ID标签分别转换成连续编号:

import pandas as pd

from sklearn.preprocessing import LabelEncoder

from sklearn.pipeline import Pipeline

class MultiColumnLabelEncoder:

def __init__(self,columns = None):

self.columns = columns # array of column names to encode

def fit(self,X,y=None):

return self # not relevant here

def transform(self,X):

'''

Transforms columns of X specified in self.columns using

LabelEncoder(). If no columns specified, transforms all

columns in X.

'''

output = X.copy()

if self.columns is not None:

for col in self.columns:

output[col] = LabelEncoder().fit_transform(output[col])

else:

for colname,col in output.iteritems():

output[colname] = LabelEncoder().fit_transform(col)

return output

def fit_transform(self,X,y=None):

return self.fit(X,y).transform(X)

MultiColumnLabelEncoder(columns = [0, 1, 2, 3, 4, 5]).fit_transform(df)

或者

df.apply(LabelEncoder().fit_transform)

0 1 2 3 4 5

0 8 8 8 7 5 9

1 3 5 2 2 1 8

2 7 1 9 8 7 1

3 6 7 6 4 9 2

4 9 4 1 0 8 0

5 1 3 3 3 2 5

6 0 6 4 5 4 7

7 4 2 7 1 3 6

8 5 0 0 2 0 4

9 2 9 5 6 6 3

# Create some toy data in a Pandas dataframe

fruit_data = pd.DataFrame({

'fruit': ['apple','orange','pear','orange'],

'color': ['red','orange','green','green'],

'weight': [5,6,3,4]

})

color fruit weight

0 red apple 5

1 orange orange 6

2 green pear 3

3 green orange 4

MultiColumnLabelEncoder(columns = ['fruit','color']).fit_transform(fruit_data)

或者

fruit_data[['fruit','color']]=fruit_data[['fruit','color']].apply(LabelEncoder().fit_transform)

color fruit weight

0 2 0 5

1 1 1 6

2 0 2 3

3 0 1 4

以上这篇使用sklearn之LabelEncoder将Label标准化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 使用sklearn之LabelEncoder将Label标准化的方法 的全部内容, 来源链接: utcz.com/z/346442.html

回到顶部