postgresql 13.1 insert into select并行查询的实现

本文信息基于PG13.1。

从PG9.6开始支持并行查询。PG11开始支持CREATE TABLE … AS、SELECT INTO以及CREATE MATERIALIZED VIEW的并行查询。

先说结论:

换用create table as 或者select into或者导入导出。

首先跟踪如下查询语句的执行计划:

select count(*) from test t1,test1 t2 where t1.id = t2.id ;

postgres=# explain analyze select count(*) from test t1,test1 t2 where t1.id = t2.id ;

QUERY PLAN

-------------------------------------------------------------------------------------------

Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=683.246..715.324 rows=1 loops=1)

-> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=681.474..715.311 rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

-> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=674.689..675.285 rows=1 loops=3)

-> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=447.799..645.689 rows=333333 loops=3)

Hash Cond: (t1.id = t2.id)

-> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.025..74.010 rows=333333 loops=3)

-> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=260.052..260.053 rows=333333 loops=3)

Buckets: 131072 Batches: 16 Memory Usage: 3520kB

-> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.032..104.804 rows=333333 loops=3)

Planning Time: 0.420 ms

Execution Time: 715.447 ms

(13 rows)

可以看到走了两个Workers。

下边看一下insert into select:

postgres=# explain analyze insert into va select count(*) from test t1,test1 t2 where t1.id = t2.id ;

QUERY PLAN

-------------------------------------------------------------------------------------------

Insert on va (cost=73228.00..73228.02 rows=1 width=4) (actual time=3744.179..3744.187 rows=0 loops=1)

-> Subquery Scan on "*SELECT*" (cost=73228.00..73228.02 rows=1 width=4) (actual time=3743.343..3743.352 rows=1 loops=1)

-> Aggregate (cost=73228.00..73228.01 rows=1 width=8) (actual time=3743.247..3743.254 rows=1 loops=1)

-> Hash Join (cost=30832.00..70728.00 rows=1000000 width=0) (actual time=1092.295..3511.301 rows=1000000 loops=1)

Hash Cond: (t1.id = t2.id)

-> Seq Scan on test t1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.030..421.537 rows=1000000 loops=1)

-> Hash (cost=14425.00..14425.00 rows=1000000 width=4) (actual time=1090.078..1090.081 rows=1000000 loops=1)

Buckets: 131072 Batches: 16 Memory Usage: 3227kB

-> Seq Scan on test1 t2 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.021..422.768 rows=1000000 loops=1)

Planning Time: 0.511 ms

Execution Time: 3745.633 ms

(11 rows)

可以看到并没有Workers的指示,没有启用并行查询。

即使开启强制并行,也无法走并行查询。

postgres=# set force_parallel_mode =on;

SET

postgres=# explain analyze insert into va select count(*) from test t1,test1 t2 where t1.id = t2.id ;

QUERY PLAN

-------------------------------------------------------------------------------------------

Insert on va (cost=73228.00..73228.02 rows=1 width=4) (actual time=3825.042..3825.049 rows=0 loops=1)

-> Subquery Scan on "*SELECT*" (cost=73228.00..73228.02 rows=1 width=4) (actual time=3824.976..3824.984 rows=1 loops=1)

-> Aggregate (cost=73228.00..73228.01 rows=1 width=8) (actual time=3824.972..3824.978 rows=1 loops=1)

-> Hash Join (cost=30832.00..70728.00 rows=1000000 width=0) (actual time=1073.587..3599.402 rows=1000000 loops=1)

Hash Cond: (t1.id = t2.id)

-> Seq Scan on test t1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.034..414.965 rows=1000000 loops=1)

-> Hash (cost=14425.00..14425.00 rows=1000000 width=4) (actual time=1072.441..1072.443 rows=1000000 loops=1)

Buckets: 131072 Batches: 16 Memory Usage: 3227kB

-> Seq Scan on test1 t2 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.022..400.624 rows=1000000 loops=1)

Planning Time: 0.577 ms

Execution Time: 3825.923 ms

(11 rows)

原因在官方文档有写:

The query writes any data or locks any database rows. If a query contains a data-modifying operation either at the top level or within a CTE, no parallel plans for that query will be generated. As an exception, the commands CREATE TABLE … AS, SELECT INTO, and CREATE MATERIALIZED VIEW which create a new table and populate it can use a parallel plan.

解决方案有如下三种:

1.select into

postgres=# explain analyze select count(*) into vaa from test t1,test1 t2 where t1.id = t2.id ;

QUERY PLAN

-------------------------------------------------------------------------------------------

Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=742.736..774.923 rows=1 loops=1)

-> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=740.223..774.907 rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

-> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=731.408..731.413 rows=1 loops=3)

-> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=489.880..700.830 rows=333333 loops=3)

Hash Cond: (t1.id = t2.id)

-> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.033..87.479 rows=333333 loops=3)

-> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=266.839..266.840 rows=333333 loops=3)

Buckets: 131072 Batches: 16 Memory Usage: 3520kB

-> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.058..106.874 rows=333333 loops=3)

Planning Time: 0.319 ms

Execution Time: 783.300 ms

(13 rows)

2.create table as

postgres=# explain analyze create table vb as select count(*) from test t1,test1 t2 where t1.id = t2.id ;

QUERY PLAN

-------------------------------------------------------------------------------------------

Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=540.120..563.733 rows=1 loops=1)

-> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=537.982..563.720 rows=3 loops=1)

Workers Planned: 2

Workers Launched: 2

-> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=526.602..527.136 rows=1 loops=3)

-> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=334.532..502.793 rows=333333 loops=3)

Hash Cond: (t1.id = t2.id)

-> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.018..57.819 rows=333333 loops=3)

-> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=189.502..189.503 rows=333333 loops=3)

Buckets: 131072 Batches: 16 Memory Usage: 3520kB

-> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.023..77.786 rows=333333 loops=3)

Planning Time: 0.189 ms

Execution Time: 565.448 ms

(13 rows)

3.或者通过导入导出的方式,例如:

psql -h localhost -d postgres -U postgres -c "select count(*) from test t1,test1 t2 where t1.id = t2.id " -o result.csv -A -t -F ","

psql -h localhost -d postgres -U postgres -c "COPY va FROM 'result.csv' WITH (FORMAT CSV, DELIMITER ',', HEADER FALSE, ENCODING 'windows-1252')"

一些场景下也会比非并行快。

补充:POSTGRESQL: 动态SQL语句中不能使用SELECT INTO?

我的数据库版本是 PostgreSQL 8.4.7 。 下面是出错的存储过程:

CREATE or Replace FUNCTION func_getnextid(

tablename varchar(240),

idname varchar(20) default 'id')

RETURNS integer AS $funcbody$

Declare

sqlstring varchar(240);

currentId integer;

Begin

sqlstring:= 'select max("' || idname || '") into currentId from "' || tablename || '";';

EXECUTE sqlstring;

if currentId is NULL or currentId = 0 then

return 1;

else

return currentId + 1;

end if;

End;

$funcbody$ LANGUAGE plpgsq

执行后出现这样的错误:

SQL error:

ERROR: EXECUTE of SELECT ... INTO is not implemented

CONTEXT: PL/pgSQL function "func_getnextbigid" line 6 at EXECUTE statement

改成这样的就对了:

CREATE or Replace FUNCTION func_getnextid(

tablename varchar(240),

idname varchar(20) default 'id')

RETURNS integer AS $funcbody$

Declare

sqlstring varchar(240);

currentId integer;

Begin

sqlstring:= 'select max("' || idname || '") from "' || tablename || '";';

EXECUTE sqlstring into currentId;

if currentId is NULL or currentId = 0 then

return 1;

else

return currentId + 1;

end if;

End;

$funcbody$ LANGUAGE plpgsql;

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

以上是 postgresql 13.1 insert into select并行查询的实现 的全部内容, 来源链接: utcz.com/z/345930.html

回到顶部