Python 函数基础知识汇总

一、函数基础

简单地说,一个函数就是一组Python语句的组合,它们可以在程序中运行一次或多次运行。Python中的函数在其他语言中也叫做过程或子例程,那么这些被包装起来的语句通过一个函数名称来调用。

有了函数,我们可以在很大程度上减少复制及粘贴代码的次数了(相信很多人在刚开始时都有这样的体验)。我们可以把相同的代码可以提炼出来做成一个函数,在需要的地方只需要调用即可。那么,这样就提高了代码的复用率了,整体代码看起来比较简练,没有那么臃肿了。

函数在Python中是最基本的程序结构,用来最大化地让我们的代码进行复用;与此同时,函数可以把一个错综复杂的系统分割为可管理的多个部分,简化编程、代码复用。

接下来我们看看什么是函数,及函数该如何定义。有两种方式可以进行函数的定义,分别是def及lambda关键字。

1. 函数定义

先总结一下为什么要使用函数?

代码复用最大化及最小化冗余代码;

过程分解(拆解)。把一个复杂的任务拆解为多个小任务。

函数定义的语法为:

def func_name(arg1, arg2, arg3, ..., argN):

statement

return value

根据上面定义,可以简单地描述为:Python中的函数是具有0个或多个参数,具有若干行语句并且具有返回值(返回值可有可无)的一个语句块(注意缩进)。

那么我们就定义一个比较简单的函数,该函数没有参数,进入ipython交互式环境:

In[1]: def hello():

...: print('Leave me alone, the world')

...:

调用(执行)该函数:

In[2]: hello()

Leave me alone, the world

我们发现hello()函数并没有return语句,在Python中,如果没有显式的执行return语句,那么函数的返回值默认为None。

我们说过,定义函数有两种形式,另外一种形式是使用lambda来定义。使用lambda定义的函数是匿名函数,这个我们在后面的内容进行讲解,这里暂且不表。

二、函数参数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂的逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

1. 默认参数

默认参数使得API简洁,但不失灵活性。当一个参数有默认值时,调用时如果不传递此参数时,会使用默认值。

def inc(init, step=1):

return init + step

# 调用一下这个函数

>>> inc(3)

4

>>> inc(3, 2)

5

默认参数有一个坑,就是非默认参数要放到默认参数的前面(不然Python的解释器会报语法错误)。允许有多个默认参数,但默认参数需要放在参数列表的最后面。

def append(x, lst=[]):

return lst.append(x)

此函数有问题。(函数中的形参是全局变量?lst在append函数中叫lst,但在全局作用域中,我们不知道lst具体叫什么名字。)

修改之后的函数为:

def append(x, lst=None):

if lst is None:

lst = []

lst.append(x)

return lst

通常来说,当默认参数是可变的时候,需要特别注意作用域的问题,我们需要上述的技巧(不可变的数据类型是值传递,可变的数据类型是引用传递。)。目前可变的对象为list,dict,set,bytearray。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

# 先定义一个函数,传入一个list,添加一个END再返回

def add_end(L=[]):

L.append('END')

return L

当我们正常调用时,结果似乎不错:

>>> add_end([1, 2, 3])

[1, 2, 3, 'END']

>>> add_end(['x', 'y', 'z'])

['x', 'y', 'z', 'END']

当我们使用默认参数调用时,一开始结果也是对的:

>>> add_end()

['END']

但是,再次调用add_end()时,结果就不对了:

>>> add_end()

['END', 'END']

>>> add_end()

['END', 'END', 'END']

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

所以,定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

def add_end(L=None):

if L is None:

L = []

L.append('END')

return L

为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

2. 位置参数

我们先写一个计算x^2的函数:

def power(x):

return x * x

对于power(x)函数,参数x就是一个位置参数。当我们调用power函数时,必须传入有且仅有的一个参数x:

>>> power(5)

25

>>> power(15)

225

现在,如果我们要计算x^3怎么办呢?可以再定义一个power3函数,但是如果要计算x^4、x^5、x^n,怎么办?我们不可能定义无限多个函数,我们可以把power(x)修改为power(x, n),用来计算x^n,说写就写:

def power(x, n):

s = 1

while n > 0:

n = n - 1

s = s * x

return s

3. 关键字参数

可变参数允许我们传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。示例如下:

def person(name, age, **kwargs):

print('name:', name, 'age:', age, 'other:', kwargs)

函数person除了必选参数name和age外,还接受关键字参数kwargs。在调用该函数时,可以只传入必选参数:

>>> person('LavenLiu', 25)

name: LavenLiu age: 25 other: {}

也可以传入任意个数的关键字参数:

>>> person('LavenLiu', 25)

name: LavenLiu age: 25 other: {}

>>> person('Taoqi', 25, city='Hebei')

name: Taoqi age: 25 other: {'city': 'Hebei'}

>>> person('James', 31, gender='M', job='NBA player')

name: James age: 31 other: {'gender': 'M', 'job': 'NBA player'}

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

>>> kwargs = {'city': 'Hebei', 'job': 'Test'}

>>> person('Taoqi', 25, **kwargs)

name: Taoqi age: 25 other: {'city': 'Hebei', 'job': 'Test'}

4. 位置参数和关键字参数

位置参数和关键字参数是函数调用时的概念。

当默认参数和关键字参数结合起来用的时候,很有用。

关键字参数必须写在位置参数之后,否则会抛出语法错误。

def minus(x, y):

return x - y

minus(3, 5) # 位置参数,位置传参

minus(5, 3) # 位置参数,位置传参

minus(x=5, y=3) # 关键字参数,关键字传参

minus(y=3, x=5) # 关键字参数,关键字传参

位置参数和关键字参数可以共存,但是关键字参数必须写到位置参数之后。

5. 可变位置参数

可变位置参数用*定义,在函数体内,可变位置参数是一个元组。

可变位置参数。

In[1]: def fn(*args):

...: print(args)

...:

In[2]: fn((1, 2, 3, 4))

((1, 2, 3, 4),)

In[3]: tup01 = (1, 2, 3, 4)

In[4]: fn(tup01)

((1, 2, 3, 4),)

In[5]: fn(*tup01)

(1, 2, 3, 4)

在python的函数中,还可以定义可变参数。可变参数就是传入的参数个数是可变的。

In[6]: def cacl(*numbers):

...: sum = 0

...: for n in numbers:

...: sum = sum + n * n

...: return sum

...:

In[7]: nums = [1, 2, 3]

In[8]: cacl(*nums) # 这里如果不在nums前面加*,有问题吗?

Out[8]: 14

6. 可变关键字参数

可变关键字参数使用**定义,在函数体内,可变关键字参数是一个字典。可变关键字参数的key都是字符串,并且符合标识符定义规范。

def fn(**kwargs):

print(kwargs)

dict01 = {'name': 'Laven Liu', 'age': 29}

fn(**dict01)

# fn(dict01)

fn(name='Laven Liu', age=29)

{'name': 'Laven Liu', 'age': 29}

{'name': 'Laven Liu', 'age': 29}

可变位置参数只能以位置参数的形式调用

可变关键字参数只能以关键字参数的形式调用

可变位置参数必须在可变关键字参数之前

In[18]: def fn(*args, **kwargs):

...: print(args)

...: print(kwargs)

...:

In[19]: fn(1, 2, 3, a=1, b=2)

(1, 2, 3)

{'a': 1, 'b': 2}

In[20]: def fn(*args, x, y):

...: print(args)

...: print(x, y)

...:

In[21]: fn(1, 2, 3, 4)

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

<ipython-input-21-0ab4fbc96a17> in <module>()

----> 1 fn(1, 2, 3, 4)

TypeError: fn() missing 2 required keyword-only arguments: 'x' and 'y'

In[22]: fn(1, 2, x=3, y=4)

(1, 2)

3 4

可变参数后置

可变参数不和默认参数一起出现

7. 参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是: 必选参数、默认参数、可变参数和关键字参数

比如定义一个函数,包含上述4种参数:

>>> def func(a, b, c=0, *args, **kwargs):

...    print('a =', a, 'b =', b, 'c =', c, 'args = ', args, 'kwargs = ', kwargs)

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

>>> func(1, 2)

a = 1 b = 2 c = 0 args = () kwargs = {}

>>> func(1, 2, c=3)

a = 1 b = 2 c = 3 args = () kwargs = {}

>>> func(1, 2, 3, 'a', 'b')

a = 1 b = 2 c = 3 args = ('a', 'b') kwargs = {}

>>> func(1, 2, 3, 'a', 'b', x=99)

a = 1 b = 2 c = 3 args = ('a', 'b') kwargs = {'x': 99}

>>>

最神奇的是通过一个tuple和dict,我们也可以调用该函数:

>>> args = (1, 2, 3, 4)

>>> kwargs = {'x': 99}

>>> func(*args, **kwargs)

a = 1 b = 2 c = 3 args = (4,) kwargs = {'x': 99}

所以,对于任意函数,都可以通过类似func(*args, **kwargs)的形式调用它,无论它的参数是如何定义的。

8. 参数解构

参数解构发生在函数调用时,可变参数发生函数定义的时候。参数解构分为两种形式,一种是位置参数解构,另一种是关键字参数解构。

参数结构的两种形式:

位置参数解构,使用一个星号。解构的对象为可迭代对象,解构的结果为位置参数。

关键字参数解构,使用两个星号。解构的对象为字典,解构的结果为关键字参数。

位置参数解构的一个例子:

In[23]: def fn(a, b, c):

...: print(a, b, c)

...:

In[24]: lst = [1, 2, 3]

In[25]: fn(lst[0], lst[1], lst[2])

1 2 3

# 也可以进行如下形式的调用

In[26]: fn(*lst) # 这种做法就叫参数解构

1 2 3

# *号可以把线性结构解包成位置参数

lst = [1, 2, 3, 4]

fn(*lst) # -> fn(lst[0], lst[1], lst[2], lst[3])

TypeError: fn() takes 3 positional arguments but 4 were given

# 这里就报错了,本来这个函数只能接收3个位置参数,lst有四个元素,通过参数解构之后,就变成了4个参数,所以就报错了。

接下来看字典解构的例子:

In[27]: d = {'a': 1, 'b': 2, 'c': 3}

In[28]: fn(**d)

1 2 3

# **可以把字典解构成关键字参数

参数解构发生在函数调用时。解构的时候,线性结构的解构是位置参数,字典解构是关键字参数。

传参的顺序:位置参数,线性结构解构;关键字参数,字典解构。尽量的少的同时使用两种解构,除非你真的知道在做什么。

In[29]: def fn(a, b, c, d):

...: print(a, b, c, d)

...:

In[30]: fn(0, *[2], c=1, **{'d': 3})

0 2 1 3

9. 参数槽(keyword-only参数)

Python3中引入的。

def fn(a, b, c):

print(a, b, c)

fn(a=1, b=2, c=3)

如果要强制传入的参数为关键字参数:

def fn(*, a, b, c):

print(a, b, c)

>>> fn(1, 2, 3)

Traceback (most recent call last):

File "<pyshell#17>", line 1, in <module>

fn(1, 2, 3)

TypeError: fn() takes 0 positional arguments but 3 were given

>>> fn(a=1, b=2, c=3)

1 2 3

# *之后的参数,必须以关键字参数的形式传递,称之为参数槽。

参数槽通常和默认参数搭配使用。

>>> def fn(a, b, *, x, y):

print(a, b)

print(x, y)

>>> fn(1, 2, 3, 4)

Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>

fn(1, 2, 3, 4)

TypeError: fn() takes 2 positional arguments but 4 were given

>>> fn(1, 2, x=3, y=4)

1 2

3 4

>>> fn(1, 2, **{'x': 3, 'y': 4})

1 2

3 4

def fn(a, b, *):

print(a, b)

def fn(a, b, *):

... print(a, b)

File "<stdin>", line 1

SyntaxError: named arguments must follow bare *

几个例子:

def fn01(*, x=1, y=5):

print(x)

print(y)

>>> fn01()

1

5

def fn02(x=1, *, y):

print(x)

print(y)

>>> fn02(y=3)

1

3

参数槽之坑:

*之后必须有参数

非命名参数有默认值时,命名参数可以没有默认值

默认参数应该在每段参数的最后

使用参数槽时,不能使用可变位置参数,可变关键之参数必须放在命名参数之后

三、高级用法

1. 递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

def fact(n):

if n==1:

return 1

return n*fact(n-1)

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

2. 匿名函数 lambda

python 使用 lambda 来创建匿名函数。

lambda只是一个表达式,函数体比def简单很多。

lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。

lambda函数拥有自己的名字空间,且不能访问自有参数列表之外或全局名字空间里的参数。

虽然lambda函数看起来只能写一行,却不等同于C或C++的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。

fib = lambda n,x=0,y=1:x if not n else fib(n-1,y,x+y)

print(fib(20))

3. Python函数中的多态

一个操作的意义取决于被操作对象的类型:

def times(x,y):

return x*y

>>>times(2,4)

>>>8

times('Python',4) # 传递了与上不同的数据类型 'PythonPythonPythonPython'

四、总结

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,运行会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数,args接收的是一个tuple;

**kwargs是关键字参数,kwargs接收的是一个dict。

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func(1, 2, 3),又可以先组装list或tuple,再通过*args传入:func(*(1, 2, 3));

关键字参数既可以直接传入:func(a=1, b=2),又可以先组装dict,再通过kwargs传入:func({'a': 1, 'b': 2})。

使用*args和**kwargs是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

以上是 Python 函数基础知识汇总 的全部内容, 来源链接: utcz.com/z/342370.html

回到顶部