pytorch 把MNIST数据集转换成图片和txt的方法

本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下:

1.下载Mnist 数据集

import os

# third-party library

import torch

import torch.nn as nn

from torch.autograd import Variable

import torch.utils.data as Data

import torchvision

import matplotlib.pyplot as plt

# torch.manual_seed(1) # reproducible

DOWNLOAD_MNIST = False

# Mnist digits dataset

if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):

# not mnist dir or mnist is empyt dir

DOWNLOAD_MNIST = True

train_data = torchvision.datasets.MNIST(

root='./mnist/',

train=True, # this is training data

transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to

# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]

download=DOWNLOAD_MNIST,

)

下载下来的其实可以直接用了,但是我们这边想把它们转换成图片和txt,这样好看些,为后面用自己的图片和txt作为准备

2. 保存为图片和txt

import os

from skimage import io

import torchvision.datasets.mnist as mnist

import numpy

root = "./mnist/raw/"

train_set = (

mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),

mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))

)

test_set = (

mnist.read_image_file(os.path.join(root,'t10k-images-idx3-ubyte')),

mnist.read_label_file(os.path.join(root,'t10k-labels-idx1-ubyte'))

)

print("train set:", train_set[0].size())

print("test set:", test_set[0].size())

def convert_to_img(train=True):

if(train):

f = open(root + 'train.txt', 'w')

data_path = root + '/train/'

if(not os.path.exists(data_path)):

os.makedirs(data_path)

for i, (img, label) in enumerate(zip(train_set[0], train_set[1])):

img_path = data_path + str(i) + '.jpg'

io.imsave(img_path, img.numpy())

int_label = str(label).replace('tensor(', '')

int_label = int_label.replace(')', '')

f.write(img_path + ' ' + str(int_label) + '\n')

f.close()

else:

f = open(root + 'test.txt', 'w')

data_path = root + '/test/'

if (not os.path.exists(data_path)):

os.makedirs(data_path)

for i, (img, label) in enumerate(zip(test_set[0], test_set[1])):

img_path = data_path + str(i) + '.jpg'

io.imsave(img_path, img.numpy())

int_label = str(label).replace('tensor(', '')

int_label = int_label.replace(')', '')

f.write(img_path + ' ' + str(int_label) + '\n')

f.close()

convert_to_img(True)

convert_to_img(False)

以上是 pytorch 把MNIST数据集转换成图片和txt的方法 的全部内容, 来源链接: utcz.com/z/342318.html

回到顶部