Python实现决策树C4.5算法的示例

为什么要改进成C4.5算法

原理

C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。

之所以这样做是因为信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后的类别变量的熵)越小,信息增益就越大);因此在信息增益下面加一个分母,该分母是当前所选特征的熵,注意:这里而不是类别变量的熵了。

这样就构成了新的特征选择准则,叫做信息增益比。为什么加了这样一个分母就会消除ID3算法倾向于选择取值较多的特征呢?

因为特征取值越多,该特征的熵就越大,分母也就越大,所以信息增益比就会减小,而不是像信息增益那样增大了,一定程度消除了算法对特征取值范围的影响。

实现

在算法实现上,C4.5算法只是修改了信息增益计算的函数calcShannonEntOfFeature和最优特征选择函数chooseBestFeatureToSplit。

calcShannonEntOfFeature在ID3的calcShannonEnt函数上加了个参数feat,ID3中该函数只用计算类别变量的熵,而calcShannonEntOfFeature可以计算指定特征或者类别变量的熵。

chooseBestFeatureToSplit函数在计算好信息增益后,同时计算了当前特征的熵IV,然后相除得到信息增益比,以最大信息增益比作为最优特征。

在划分数据的时候,有可能出现特征取同一个值,那么该特征的熵为0,同时信息增益也为0(类别变量划分前后一样,因为特征只有一个取值),0/0没有意义,可以跳过该特征。

#coding=utf-8

import operator

from math import log

import time

import os, sys

import string

def createDataSet(trainDataFile):

print trainDataFile

dataSet = []

try:

fin = open(trainDataFile)

for line in fin:

line = line.strip()

cols = line.split('\t')

row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]]

dataSet.append(row)

#print row

except:

print 'Usage xxx.py trainDataFilePath'

sys.exit()

labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain']

print 'dataSetlen', len(dataSet)

return dataSet, labels

#calc shannon entropy of label or feature

def calcShannonEntOfFeature(dataSet, feat):

numEntries = len(dataSet)

labelCounts = {}

for feaVec in dataSet:

currentLabel = feaVec[feat]

if currentLabel not in labelCounts:

labelCounts[currentLabel] = 0

labelCounts[currentLabel] += 1

shannonEnt = 0.0

for key in labelCounts:

prob = float(labelCounts[key])/numEntries

shannonEnt -= prob * log(prob, 2)

return shannonEnt

def splitDataSet(dataSet, axis, value):

retDataSet = []

for featVec in dataSet:

if featVec[axis] == value:

reducedFeatVec = featVec[:axis]

reducedFeatVec.extend(featVec[axis+1:])

retDataSet.append(reducedFeatVec)

return retDataSet

def chooseBestFeatureToSplit(dataSet):

numFeatures = len(dataSet[0]) - 1 #last col is label

baseEntropy = calcShannonEntOfFeature(dataSet, -1)

bestInfoGainRate = 0.0

bestFeature = -1

for i in range(numFeatures):

featList = [example[i] for example in dataSet]

uniqueVals = set(featList)

newEntropy = 0.0

for value in uniqueVals:

subDataSet = splitDataSet(dataSet, i, value)

prob = len(subDataSet) / float(len(dataSet))

newEntropy += prob *calcShannonEntOfFeature(subDataSet, -1) #calc conditional entropy

infoGain = baseEntropy - newEntropy

   iv = calcShannonEntOfFeature(dataSet, i)

if(iv == 0): #value of the feature is all same,infoGain and iv all equal 0, skip the feature

continue

   infoGainRate = infoGain / iv

if infoGainRate > bestInfoGainRate:

bestInfoGainRate = infoGainRate

bestFeature = i

return bestFeature

#feature is exhaustive, reture what you want label

def majorityCnt(classList):

classCount = {}

for vote in classList:

if vote not in classCount.keys():

classCount[vote] = 0

classCount[vote] += 1

return max(classCount)

def createTree(dataSet, labels):

classList = [example[-1] for example in dataSet]

if classList.count(classList[0]) ==len(classList): #all data is the same label

return classList[0]

if len(dataSet[0]) == 1: #all feature is exhaustive

return majorityCnt(classList)

bestFeat = chooseBestFeatureToSplit(dataSet)

bestFeatLabel = labels[bestFeat]

if(bestFeat == -1): #特征一样,但类别不一样,即类别与特征不相关,随机选第一个类别做分类结果

return classList[0]

myTree = {bestFeatLabel:{}}

del(labels[bestFeat])

featValues = [example[bestFeat] for example in dataSet]

uniqueVals = set(featValues)

for value in uniqueVals:

subLabels = labels[:]

myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)

return myTree

def main():

if(len(sys.argv) < 3):

print 'Usage xxx.py trainSet outputTreeFile'

sys.exit()

data,label = createDataSet(sys.argv[1])

t1 = time.clock()

myTree = createTree(data,label)

t2 = time.clock()

fout = open(sys.argv[2], 'w')

fout.write(str(myTree))

fout.close()

print 'execute for ',t2-t1

if __name__=='__main__':

main()

以上是 Python实现决策树C4.5算法的示例 的全部内容, 来源链接: utcz.com/z/339757.html

回到顶部