Python实现矩阵相乘的三种方法小结

问题描述

分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29时的运行时间与MATLAB自带的矩阵相乘的运行时间,绘制时间对比图。

解题方法

本文采用了以下方法进行求值:矩阵计算法、定义法、分治法和Strassen方法。这里我们使用Matlab以及Python对这个问题进行处理,比较两种语言在一样的条件下,运算速度的差别。

编程语言

Python

具体代码

#-*- coding: utf-8 -*-

from matplotlib.font_manager import FontProperties

import numpy as np

import time

import random

import math

import copy

import matplotlib.pyplot as plt

#n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11, 2**12]

n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11]

Sum_time1 = []

Sum_time2 = []

Sum_time3 = []

Sum_time4 = []

for m in n:

A = np.random.randint(0, 2, [m, m])

B = np.random.randint(0, 2, [m, m])

A1 = np.mat(A)

B1 = np.mat(B)

time_start = time.time()

C1 = A1*B1

time_end = time.time()

Sum_time1.append(time_end - time_start)

C2 = np.zeros([m, m], dtype = np.int)

time_start = time.time()

for i in range(m):

for k in range(m):

for j in range(m):

C2[i, j] = C2[i, j] + A[i, k] * B[k, j]

time_end = time.time()

Sum_time2.append(time_end - time_start)

A11 = np.mat(A[0:m//2, 0:m//2])

A12 = np.mat(A[0:m//2, m//2:m])

A21 = np.mat(A[m//2:m, 0:m//2])

A22 = np.mat(A[m//2:m, m//2:m])

B11 = np.mat(B[0:m//2, 0:m//2])

B12 = np.mat(B[0:m//2, m//2:m])

B21 = np.mat(B[m//2:m, 0:m//2])

B22 = np.mat(B[m//2:m, m//2:m])

time_start = time.time()

C11 = A11 * B11 + A12 * B21

C12 = A11 * B12 + A12 * B22

C21 = A21 * B11 + A22 * B21

C22 = A21 * B12 + A22 * B22

C3 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))

time_end = time.time()

Sum_time3.append(time_end - time_start)

time_start = time.time()

M1 = A11 * (B12 - B22)

M2 = (A11 + A12) * B22

M3 = (A21 + A22) * B11

M4 = A22 * (B21 - B11)

M5 = (A11 + A22) * (B11 + B22)

M6 = (A12 - A22) * (B21 + B22)

M7 = (A11 - A21) * (B11 + B12)

C11 = M5 + M4 - M2 + M6

C12 = M1 + M2

C21 = M3 + M4

C22 = M5 + M1 - M3 - M7

C4 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))

time_end = time.time()

Sum_time4.append(time_end - time_start)

f1 = open('python_time1.txt', 'w')

for ele in Sum_time1:

f1.writelines(str(ele) + '\n')

f1.close()

f2 = open('python_time2.txt', 'w')

for ele in Sum_time2:

f2.writelines(str(ele) + '\n')

f2.close()

f3 = open('python_time3.txt', 'w')

for ele in Sum_time3:

f3.writelines(str(ele) + '\n')

f3.close()

f4 = open('python_time4.txt', 'w')

for ele in Sum_time4:

f4.writelines(str(ele) + '\n')

f4.close()

font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=8)

plt.figure(1)

plt.subplot(221)

plt.semilogx(n, Sum_time1, 'r-*')

plt.ylabel(u"时间(s)", fontproperties=font)

plt.xlabel(u"矩阵的维度n", fontproperties=font)

plt.title(u'python自带的方法', fontproperties=font)

plt.subplot(222)

plt.semilogx(n, Sum_time2, 'b-*')

plt.ylabel(u"时间(s)", fontproperties=font)

plt.xlabel(u"矩阵的维度n", fontproperties=font)

plt.title(u'定义法', fontproperties=font)

plt.subplot(223)

plt.semilogx(n, Sum_time3, 'y-*')

plt.ylabel(u"时间(s)", fontproperties=font)

plt.xlabel(u"矩阵的维度n", fontproperties=font)

plt.title( u'分治法', fontproperties=font)

plt.subplot(224)

plt.semilogx(n, Sum_time4, 'g-*')

plt.ylabel(u"时间(s)", fontproperties=font)

plt.xlabel(u"矩阵的维度n", fontproperties=font)

plt.title( u'Strasses法', fontproperties=font)

plt.figure(2)

plt.semilogx(n, Sum_time1, 'r-*', n, Sum_time2, 'b-+', n, Sum_time3, 'y-o', n, Sum_time4, 'g-^')

#plt.legend(u'python自带的方法', u'定义法', u'分治法', u'Strasses法', fontproperties=font)

plt.show()

以上这篇Python实现矩阵相乘的三种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Python实现矩阵相乘的三种方法小结 的全部内容, 来源链接: utcz.com/z/339718.html

回到顶部