生成斐波那契数列
斐波那契数列就是这样,
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,……
在此序列中,第n个项是第(n-1)个和第(n-2)个项的总和。
要生成,我们可以使用递归方法,但是在动态编程中,过程更简单。它可以将所有斐波那契数存储在一个表中,通过使用该表,可以轻松生成此序列中的下一项。
输入输出
Input:Take the term number as an input. Say it is 10
Output:
Enter number of terms: 10
10th fibinacci Terms: 55
算法
genFiboSeries(n)
输入:最大术语数。
输出-第n个斐波纳契项。
Begindefine array named fibo of size n+2
fibo[0] := 0
fibo[1] := 1
for i := 2 to n, do
fibo[i] := fibo[i-1] + fibo[i-2]
done
return fibo[n]
End
示例
#include<iostream>using namespace std;
int genFibonacci(int n) {
int fibo[n+2]; //array to store fibonacci values
//系列的第0个和第1数字是0和1-
fibo[0] = 0;
fibo[1] = 1;
for (int i = 2; i <= n; i++) {
fibo[i] = fibo[i-1] + fibo[i-2]; //generate ith term using previous two terms
}
return fibo[n];
}
int main () {
int n;
cout << "Enter number of terms: "; cin >>n;
cout << n<<" th Fibonacci Terms: "<<genFibonacci(n)<<endl;
}
输出结果
Enter number of terms: 1010th Fibonacci Terms: 55
以上是 生成斐波那契数列 的全部内容, 来源链接: utcz.com/z/338535.html