Java中对List去重 Stream去重的解决方法

问题

当下互联网技术成熟,越来越多的趋向去中心化、分布式、流计算,使得很多以前在数据库侧做的事情放到了Java端。今天有人问道,如果数据库字段没有索引,那么应该如何根据该字段去重?大家都一致认为用Java来做,但怎么做呢?

解答

忽然想起以前写过list去重的文章,找出来一看。做法就是将list中对象的hashcode和equals方法重写,然后丢到HashSet里,然后取出来。这是最初刚学Java的时候像被字典一样背写出来的答案。就比如面试,面过号称做了3年Java的人,问Set和HashMap的区别可以背出来,问如何实现就不知道了。也就是说,初学者只背特性。但真正在项目中使用的时候你需要确保一下是不是真的这样。因为背书没用,只能相信结果。你需要知道HashSet如何帮我做到去重了。换个思路,不用HashSet可以去重吗?最简单,最直接的办法不就是每次都拿着和历史数据比较,都不相同则插入队尾。而HashSet只是加速了这个过程而已。

首先,给出我们要排序的对象User

@Data

@Builder

@AllArgsConstructor

public class User {

private Integer id;

private String name;

}

List<User> users = Lists.newArrayList(

new User(1, "a"),

new User(1, "b"),

new User(2, "b"),

new User(1, "a"));

目标是取出id不重复的user,为了防止扯皮,给个规则,只要任意取出id唯一的数据即可,不用拘泥id相同时算哪个。

用最直观的办法

这个办法就是用一个空list存放遍历后的数据。

@Test

public void dis1() {

List<User> result = new LinkedList<>();

for (User user : users) {

boolean b = result.stream().anyMatch(u -> u.getId().equals(user.getId()));

if (!b) {

result.add(user);

}

}

System.out.println(result);

}

用HashSet

背过特性的都知道HashSet可以去重,那么是如何去重的呢? 再深入一点的背过根据hashcode和equals方法。那么如何根据这两个做到的呢?没有看过源码的人是无法继续的,面试也就到此结束了。

事实上,HashSet是由HashMap来实现的(没有看过源码的时候曾经一直直观的以为HashMap的key是HashSet来实现的,恰恰相反)。这里不展开叙述,只要看HashSet的构造方法和add方法就能理解了。

public HashSet() {

map = new HashMap<>();

}

/**

* 显然,存在则返回false,不存在的返回true

*/

public boolean add(E e) {

return map.put(e, PRESENT)==null;

}

那么,由此也可以看出HashSet的去重复就是根据HashMap实现的,而HashMap的实现又完全依赖于hashcode和equals方法。这下就彻底打通了,想用HashSet就必须看好自己的这两个方法。

在本题目中,要根据id去重,那么,我们的比较依据就是id了。修改如下:

@Override

public boolean equals(Object o) {

if (this == o) {

return true;

}

if (o == null || getClass() != o.getClass()) {

return false;

}

User user = (User) o;

return Objects.equals(id, user.id);

}

@Override

public int hashCode() {

return Objects.hash(id);

}

//hashcode

result = 31 * result + (element == null ? 0 : element.hashCode());

其中, Objects调用Arrays的hashcode,内容如上述所示。乘以31等于x<<5-x。

最终实现如下:

@Test

public void dis2() {

Set<User> result = new HashSet<>(users);

System.out.println(result);

}

使用Java的Stream去重

回到最初的问题,之所以提这个问题是因为想要将数据库侧去重拿到Java端,那么数据量可能比较大,比如10w条。对于大数据,采用Stream相关函数是最简单的了。正好Stream也提供了distinct函数。那么应该怎么用呢?

users.parallelStream().distinct().forEach(System.out::println);

没看到用lambda当作参数,也就是没有提供自定义条件。幸好Javadoc标注了去重标准:

Returns a stream consisting of the distinct elements

(according to {@link Object#equals(Object)}) of this stream.

我们知道,也必须背过这样一个准则:equals返回true的时候,hashcode的返回值必须相同. 这个在背的时候略微有些逻辑混乱,但只要了解了HashMap的实现方式就不会觉得拗口了。HashMap先根据hashcode方法定位,再比较equals方法。

所以,要使用distinct来实现去重,必须重写hashcode和equals方法,除非你使用默认的。

那么,究竟为啥要这么做?点进去看一眼实现。

<P_IN> Node<T> reduce(PipelineHelper<T> helper, Spliterator<P_IN> spliterator) {

// If the stream is SORTED then it should also be ORDERED so the following will also

// preserve the sort order

TerminalOp<T, LinkedHashSet<T>> reduceOp

= ReduceOps.<T, LinkedHashSet<T>>makeRef(LinkedHashSet::new, LinkedHashSet::add, LinkedHashSet::addAll);

return Nodes.node(reduceOp.evaluateParallel(helper, spliterator));

}


内部是用reduce实现的啊,想到reduce,瞬间想到一种自己实现distinctBykey的方法。我只要用reduce,计算部分就是把Stream的元素拿出来和我自己内置的一个HashMap比较,有则跳过,没有则放进去。其实,思路还是最开始的那个最直白的方法。

@Test

public void dis3() {

users.parallelStream().filter(distinctByKey(User::getId))

.forEach(System.out::println);

}

public static <T> Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {

Set<Object> seen = ConcurrentHashMap.newKeySet();

return t -> seen.add(keyExtractor.apply(t));

}


当然,如果是并行stream,则取出来的不一定是第一个,而是随机的。

上述方法是至今发现最好的,无侵入性的。但如果非要用distinct。只能像HashSet那个方法一样重写hashcode和equals。

小结

会不会用这些东西,你只能去自己练习过,不然到了真正要用的时候很难一下子就拿出来,不然就冒险用。而若真的想大胆使用,了解规则和实现原理也是必须的。比如,LinkedHashSet和HashSet的实现有何不同。

附上贼简单的LinkedHashSet源码:

public class LinkedHashSet<E>

extends HashSet<E>

implements Set<E>, Cloneable, java.io.Serializable {

private static final long serialVersionUID = -2851667679971038690L;

public LinkedHashSet(int initialCapacity, float loadFactor) {

super(initialCapacity, loadFactor, true);

}

public LinkedHashSet(int initialCapacity) {

super(initialCapacity, .75f, true);

}

public LinkedHashSet() {

super(16, .75f, true);

}

public LinkedHashSet(Collection<? extends E> c) {

super(Math.max(2*c.size(), 11), .75f, true);

addAll(c);

}

@Override

public Spliterator<E> spliterator() {

return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED);

}

}

补充:

Java中List集合去除重复数据的方法

1. 循环list中的所有元素然后删除重复

public static List removeDuplicate(List list) {

for ( int i = 0 ; i < list.size() - 1 ; i ++ ) {

for ( int j = list.size() - 1 ; j > i; j -- ) {

if (list.get(j).equals(list.get(i))) {

list.remove(j);

}

}

}

return list;

}

2. 通过HashSet踢除重复元素

public static List removeDuplicate(List list) {

HashSet h = new HashSet(list);

list.clear();

list.addAll(h);

return list;

}

3. 删除ArrayList中重复元素,保持顺序

// 删除ArrayList中重复元素,保持顺序

public static void removeDuplicateWithOrder(List list) {

Set set = new HashSet();

List newList = new ArrayList();

for (Iterator iter = list.iterator(); iter.hasNext();) {

Object element = iter.next();

if (set.add(element))

newList.add(element);

}

list.clear();

list.addAll(newList);

System.out.println( " remove duplicate " + list);

}

4.把list里的对象遍历一遍,用list.contain(),如果不存在就放入到另外一个list集合中

public static List removeDuplicate(List list){

List listTemp = new ArrayList();

for(int i=0;i<list.size();i++){

if(!listTemp.contains(list.get(i))){

listTemp.add(list.get(i));

}

}

return listTemp;

}

以上是 Java中对List去重 Stream去重的解决方法 的全部内容, 来源链接: utcz.com/z/336727.html

回到顶部