Android动画之小球拟合动画实例

Android动画之小球拟合动画实例

实现效果:

动画组成:

1.通过三阶贝塞尔曲线来拟合圆,拟合系数的由来,以及怎么选控制点.

2.利用画布canvas.translate,以及scale,rotate的方法,来渐变绘制的过程.

3.熟悉拟合过程.

4.不熟悉的话,先绘制辅助点的移动路线,对理解两个圆的分裂的拟合过程有好处.

package com.example.administrator.animationworkdemo.views;

import android.animation.ValueAnimator;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.graphics.Path;

import android.graphics.PathMeasure;

import android.util.AttributeSet;

import android.view.View;

import java.util.concurrent.CyclicBarrier;

/**

* 这个例子中,大家可以发现作者的拟合做的并不是很好,连接的地方比较生硬,大家可以思考下如何改善

* 贝塞尔曲线绘制比较复杂,大家在学习过程中,可以仿照示例中的,将辅助点和线绘制出来,这样会看的更清楚一点

*/

public class BallShapeChangeView extends View {

// 使用贝塞尔曲线来拟合圆的magic number

//C 是三阶贝塞尔曲线拟合 圆的 误差最小 获得控制点的参数.

private static final float C = 0.551915024494f;

private Paint mPaint;

private int mRadiusBig = 120, mRadiusSmall = (int) (mRadiusBig / 2f), mWidth, mHeight, mMimWidth = (int) (mRadiusSmall * 2 * 3)/*fill view mim width*/;

private float mFraction = 0, mFractionDegree = 0, /*degree*/

mLength, mDistanceBezier;

private Path mPathCircle, mPathBezier;

private ValueAnimator mValueAnimator;

private float[] mPointData = new float[8];// 4个数据点 顺时针排序,从左边开始

private float[] mPointCtrl = new float[16];// 8个控制点

private float[] mPos = new float[2];

private PathMeasure mPathMeasure;

private Path mPathBezier2;

public BallShapeChangeView(Context context, AttributeSet attrs) {

super(context, attrs);

mPaint = new Paint();

mPaint.setStyle(Paint.Style.FILL);

mPaint.setColor(0xFF7C191E);

mPaint.setAntiAlias(true);

mPathCircle = new Path();

mPathBezier = new Path();

mPathBezier2 = new Path();

mPathMeasure = new PathMeasure();

mValueAnimator = ValueAnimator.ofFloat(0, 1, 0);

mValueAnimator.setDuration(3000);

mValueAnimator.setRepeatCount(Integer.MAX_VALUE);

mValueAnimator.addUpdateListener(new ValueAnimator.AnimatorUpdateListener() {

@Override

public void onAnimationUpdate(ValueAnimator animation) {

mFraction = (float) animation.getAnimatedValue();

mFractionDegree = animation.getAnimatedFraction();

invalidate();

}

});

}

@Override

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

// 为了能够更好的控制绘制的大小和位置,当然,初学者写死也是可以的

super.onMeasure(widthMeasureSpec, heightMeasureSpec);

mWidth = MeasureSpec.getSize(widthMeasureSpec);

mHeight = MeasureSpec.getSize(heightMeasureSpec);

int widthMode = MeasureSpec.getMode(widthMeasureSpec);

int heightMode = MeasureSpec.getMode(heightMeasureSpec);

if (widthMode != MeasureSpec.AT_MOST && heightMode != MeasureSpec.AT_MOST) {

if (mWidth < mMimWidth)

mWidth = mMimWidth;

if (mHeight < mMimWidth)

mHeight = mMimWidth;

} else if (widthMeasureSpec != MeasureSpec.AT_MOST) {

if (mWidth < mMimWidth)

mWidth = mMimWidth;

} else if (heightMeasureSpec != MeasureSpec.AT_MOST) {

if (mHeight < mMimWidth)

mHeight = mMimWidth;

}

setMeasuredDimension(mWidth, mHeight);

}

@Override

protected void onDraw(Canvas canvas) {

super.onDraw(canvas);

// 通过mFraction来控制绘图的过程,这是常用的一种方式

canvas.translate(mWidth / 2, mHeight / 2);

canvas.scale(1, -1);

canvas.rotate(-360 * mFractionDegree);

setDoubleCirClePath();

canvas.drawPath(mPathCircle, mPaint);

if (mFraction < (1 / 3f)) {// 缩小大圆

setCirclePath();

canvas.drawPath(mPathCircle, mPaint);

} else if (mFraction < 3 / 4f) {// 画贝塞尔曲线

setBezierPath2();

canvas.drawPath(mPathBezier, mPaint);

canvas.drawPath(mPathBezier2, mPaint);

} else {// 画分离

//setLastBezierPath();

//canvas.drawPath(mPathBezier, mPaint);

}

}

private void setDoubleCirClePath() {

mPathCircle.reset();

if (mFraction < (1 / 3f)) {

mPathCircle.addCircle(-mRadiusSmall / 2f * mFraction * 3, 0, mRadiusSmall, Path.Direction.CW);

mPathCircle.addCircle(mRadiusSmall / 2f * mFraction * 3, 0, mRadiusSmall, Path.Direction.CW);

} else {

float distance = (mFraction - 1 / 3f) / (2 / 3f) * (mRadiusSmall * 2 + mRadiusSmall / 2f);

mPathCircle.addCircle(-mRadiusSmall / 2f - distance, 0, mRadiusSmall, Path.Direction.CW);

mPathCircle.addCircle(mRadiusSmall / 2f + distance, 0, mRadiusSmall, Path.Direction.CW);

}

}

// mFraction 0 ~ 1/3

private void setCirclePath() {

mPointData[0] = -mRadiusBig + mRadiusSmall / 2f * mFraction * 3f;

mPointData[1] = 0;

mPointData[2] = 0;

mPointData[3] = mRadiusBig - mRadiusBig / 2f * mFraction * 3f;//0到1 的三分之一 用来给大圆做效果;

mPointData[4] = mRadiusBig - mRadiusSmall / 2f * mFraction * 3f;

mPointData[5] = 0;

mPointData[6] = mPointData[2];

mPointData[7] = -mPointData[3];

mPointCtrl[0] = mPointData[0];// x轴一样

mPointCtrl[1] = mRadiusBig * C;// y轴向下的

mPointCtrl[2] = mPointData[2] - mRadiusBig * C;

mPointCtrl[3] = mPointData[3];// y轴一样

mPointCtrl[4] = mPointData[2] + mRadiusBig * C;

mPointCtrl[5] = mPointData[3];

mPointCtrl[6] = mPointData[4];

mPointCtrl[7] = mPointCtrl[1];

mPointCtrl[8] = mPointData[4];

mPointCtrl[9] = -mPointCtrl[1];

mPointCtrl[10] = mPointCtrl[4];

mPointCtrl[11] = mPointData[7];

mPointCtrl[12] = mPointCtrl[2];

mPointCtrl[13] = mPointData[7];

mPointCtrl[14] = mPointData[0];

mPointCtrl[15] = -mPointCtrl[1];

mPathCircle.reset();

mPathCircle.moveTo(mPointData[0], mPointData[1]);

mPathCircle.cubicTo(mPointCtrl[0], mPointCtrl[1], mPointCtrl[2], mPointCtrl[3], mPointData[2], mPointData[3]);

mPathCircle.cubicTo(mPointCtrl[4], mPointCtrl[5], mPointCtrl[6], mPointCtrl[7], mPointData[4], mPointData[5]);

mPathCircle.cubicTo(mPointCtrl[8], mPointCtrl[9], mPointCtrl[10], mPointCtrl[11], mPointData[6], mPointData[7]);

mPathCircle.cubicTo(mPointCtrl[12], mPointCtrl[13], mPointCtrl[14], mPointCtrl[15], mPointData[0], mPointData[1]);

}

// mFraction 1/3 ~ 3/4

private void setBezierPath2() {

mPointData[0] = -mRadiusSmall / 2 - (mFraction - 1 / 3f) * mRadiusBig * 2f;

if (mFraction < 2 / 3f) {

mPointData[1] = -mRadiusSmall;

} else {

mPointData[1] = -mRadiusSmall + (mFraction - 2 / 3f) * 3 * mRadiusSmall;

}

if (mFraction < 3 / 4f) {

mPointData[2] = 0;

} else {

//当分裂超过一定程度让结束点的位置变远

mPointData[2] = (mFraction - 3 / 4f) * 16 * mPointData[0];

}

//当动画执行进度大于2/3时,此时该点接近于0

mPointData[3] = -mRadiusBig + mFraction * mRadiusBig * 1.5f < -0.01f * mRadiusBig ? -mRadiusBig + mFraction * mRadiusBig * 1.5f : 0.01f * -mRadiusBig;

mPointData[4] = mPointData[2];

mPointData[5] = -mPointData[3];

mPointData[6] = mPointData[0];

mPointData[7] = -mPointData[1];

mPointCtrl[0] = mPointData[0] + mRadiusSmall;

mPointCtrl[1] = mPointData[3];

mPointCtrl[2] = mPointData[0] + mRadiusSmall;

mPointCtrl[3] = -mPointData[3];

mPathBezier.reset();

mPathBezier.moveTo(mPointData[0], mPointData[1]);

mPathBezier.quadTo(mPointCtrl[0], mPointCtrl[1], mPointData[2], mPointData[3]);

mPathBezier.lineTo(mPointData[4], mPointData[5]);

mPathBezier.quadTo(mPointCtrl[2], mPointCtrl[3], mPointData[6], mPointData[7]);

mPathBezier2.reset();

mPathBezier2.moveTo(-mPointData[0], mPointData[1]);

mPathBezier2.quadTo(-mPointCtrl[0], mPointCtrl[1], -mPointData[2], mPointData[3]);

mPathBezier2.lineTo(-mPointData[4], mPointData[5]);

mPathBezier2.quadTo(-mPointCtrl[2], mPointCtrl[3], -mPointData[6], mPointData[7]);

}

// mFraction 1/3 ~ 3/4

private void setBezierPath() {

mPathBezier.reset();

float distance = (2 * mRadiusSmall + mRadiusSmall / 2f) * mFraction;

//float topY = mRadiusSmall * (1 - 0.6f * mFraction);

float topY = mRadiusSmall - mRadiusSmall * (mFraction - 1 / 3f);

float distanceBezier = topY - distance * C * (0.5f + 0.5f * mFraction);

if (mDistanceBezier != 0 && distanceBezier < (mDistanceBezier)) {

distanceBezier = mDistanceBezier;

}

mPathBezier.moveTo(-distance, topY);

mPathBezier.cubicTo(-distance, distanceBezier, distance, distanceBezier, distance, topY);

if (mDistanceBezier == 0) {

mPathMeasure.setPath(mPathBezier, false);

mLength = mPathMeasure.getLength();

mPathMeasure.getPosTan(mLength / 2, mPos, null);

if (mPos[1] <= 8) {

mDistanceBezier = distanceBezier;

mPathBezier.reset();

mPathBezier.moveTo(-distance, topY);

mPathBezier.cubicTo(-distance, mDistanceBezier, distance, mDistanceBezier, distance, topY);

mPathBezier.lineTo(distance, -topY);

mPathBezier.cubicTo(distance, -mDistanceBezier, -distance, -mDistanceBezier, -distance, -topY);

mPathBezier.close();

return;

}

}

mPathBezier.lineTo(distance, -topY);

mPathBezier.cubicTo(distance, -distanceBezier, -distance, -distanceBezier, -distance, -topY);

mPathBezier.close();

}

// mFraction 3/4 ~ 1

private void setLastBezierPath() {

float x = -mRadiusSmall / 2f - (mFraction - 1 / 3f) / (2 / 3f) * (mRadiusSmall * 2 + mRadiusSmall / 2f);

mPathBezier.reset();

mPathBezier.moveTo(x, mRadiusSmall);

mPathBezier.quadTo(x, 0, x + mRadiusSmall + mRadiusSmall * (4 - mFraction * 4), 0);

mPathBezier.quadTo(x, 0, x, -mRadiusSmall);

mPathBezier.lineTo(x, mRadiusSmall);

mPathBezier.moveTo(-x, mRadiusSmall);

mPathBezier.quadTo(-x, 0, -x - mRadiusSmall - mRadiusSmall * (4 - mFraction * 4), 0);

mPathBezier.quadTo(-x, 0, -x, -mRadiusSmall);

mPathBezier.lineTo(-x, mRadiusSmall);

mPathBezier.close();

}

@Override

protected void onAttachedToWindow() {

super.onAttachedToWindow();

if (!mValueAnimator.isRunning())

mValueAnimator.start();

}

@Override

protected void onDetachedFromWindow() {

super.onDetachedFromWindow();

if (mValueAnimator.isRunning())

mValueAnimator.cancel();

}

}

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

以上是 Android动画之小球拟合动画实例 的全部内容, 来源链接: utcz.com/z/333580.html

回到顶部