pytorch:实现简单的GAN示例(MNIST数据集)

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-

"""

Created on Sat Oct 13 10:22:45 2018

@author: www

"""

import torch

from torch import nn

from torch.autograd import Variable

import torchvision.transforms as tfs

from torch.utils.data import DataLoader, sampler

from torchvision.datasets import MNIST

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸

plt.rcParams['image.interpolation'] = 'nearest'

plt.rcParams['image.cmap'] = 'gray'

def show_images(images): # 定义画图工具

images = np.reshape(images, [images.shape[0], -1])

sqrtn = int(np.ceil(np.sqrt(images.shape[0])))

sqrtimg = int(np.ceil(np.sqrt(images.shape[1])))

fig = plt.figure(figsize=(sqrtn, sqrtn))

gs = gridspec.GridSpec(sqrtn, sqrtn)

gs.update(wspace=0.05, hspace=0.05)

for i, img in enumerate(images):

ax = plt.subplot(gs[i])

plt.axis('off')

ax.set_xticklabels([])

ax.set_yticklabels([])

ax.set_aspect('equal')

plt.imshow(img.reshape([sqrtimg,sqrtimg]))

return

def preprocess_img(x):

x = tfs.ToTensor()(x)

return (x - 0.5) / 0.5

def deprocess_img(x):

return (x + 1.0) / 2.0

class ChunkSampler(sampler.Sampler): # 定义一个取样的函数

"""Samples elements sequentially from some offset.

Arguments:

num_samples: # of desired datapoints

start: offset where we should start selecting from

"""

def __init__(self, num_samples, start=0):

self.num_samples = num_samples

self.start = start

def __iter__(self):

return iter(range(self.start, self.start + self.num_samples))

def __len__(self):

return self.num_samples

NUM_TRAIN = 50000

NUM_VAL = 5000

NOISE_DIM = 96

batch_size = 128

train_set = MNIST('E:/data', train=True, transform=preprocess_img)

train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0))

val_set = MNIST('E:/data', train=True, transform=preprocess_img)

val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN))

imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 可视化图片效果

show_images(imgs)

#判别网络

def discriminator():

net = nn.Sequential(

nn.Linear(784, 256),

nn.LeakyReLU(0.2),

nn.Linear(256, 256),

nn.LeakyReLU(0.2),

nn.Linear(256, 1)

)

return net

#生成网络

def generator(noise_dim=NOISE_DIM):

net = nn.Sequential(

nn.Linear(noise_dim, 1024),

nn.ReLU(True),

nn.Linear(1024, 1024),

nn.ReLU(True),

nn.Linear(1024, 784),

nn.Tanh()

)

return net

#判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1

bce_loss = nn.BCEWithLogitsLoss()#交叉熵损失函数

def discriminator_loss(logits_real, logits_fake): # 判别器的 loss

size = logits_real.shape[0]

true_labels = Variable(torch.ones(size, 1)).float()

false_labels = Variable(torch.zeros(size, 1)).float()

loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)

return loss

def generator_loss(logits_fake): # 生成器的 loss

size = logits_fake.shape[0]

true_labels = Variable(torch.ones(size, 1)).float()

loss = bce_loss(logits_fake, true_labels)

return loss

# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999

def get_optimizer(net):

optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999))

return optimizer

def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250,

noise_size=96, num_epochs=10):

iter_count = 0

for epoch in range(num_epochs):

for x, _ in train_data:

bs = x.shape[0]

# 判别网络

real_data = Variable(x).view(bs, -1) # 真实数据

logits_real = D_net(real_data) # 判别网络得分

sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布

g_fake_seed = Variable(sample_noise)

fake_images = G_net(g_fake_seed) # 生成的假的数据

logits_fake = D_net(fake_images) # 判别网络得分

d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss

D_optimizer.zero_grad()

d_total_error.backward()

D_optimizer.step() # 优化判别网络

# 生成网络

g_fake_seed = Variable(sample_noise)

fake_images = G_net(g_fake_seed) # 生成的假的数据

gen_logits_fake = D_net(fake_images)

g_error = generator_loss(gen_logits_fake) # 生成网络的 loss

G_optimizer.zero_grad()

g_error.backward()

G_optimizer.step() # 优化生成网络

if (iter_count % show_every == 0):

print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item()))

imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())

show_images(imgs_numpy[0:16])

plt.show()

print()

iter_count += 1

D = discriminator()

G = generator()

D_optim = get_optimizer(D)

G_optim = get_optimizer(G)

train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)

以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 pytorch:实现简单的GAN示例(MNIST数据集) 的全部内容, 来源链接: utcz.com/z/332424.html

回到顶部