Android延迟实现的几种解决方法及原理分析

前言

Android开发中我们可能会有延时执行某个操作的需求,例如我们启动应用的时候,一开始呈现的是一个引导页面,过了两三秒后,会自动跳转到主界面。这就是一个延时操作。

而写这篇文章的目的,是看到群里有人在实现延迟的时候,用如下的第四种方法,个人感觉有点不妥,为了防止更多的人有这种想法,所以自己抽空深入分析,就分析的结果,写下此文,希望对部分人有启示作用。

1.实现延迟的几种方法?

答:

1.java.util.Timer类的:

public void schedule(TimerTask task, long delay) {

if (delay < 0)

throw new IllegalArgumentException("Negative delay.");

sched(task, System.currentTimeMillis()+delay, 0);

}

2.android.os.Handler类:

public final boolean postDelayed(Runnable r, long delayMillis)

{

return sendMessageDelayed(getPostMessage(r), delayMillis);

}

3.android.app.AlarmManager类:

@SystemApi

@RequiresPermission(android.Manifest.permission.UPDATE_DEVICE_STATS)

public void set(@AlarmType int type, long triggerAtMillis, long windowMillis,

long intervalMillis, OnAlarmListener listener, Handler targetHandler,

WorkSource workSource) {

setImpl(type, triggerAtMillis, windowMillis, intervalMillis, 0, null, listener, null,

targetHandler, workSource, null);

}

4.Thread.sleep()然后在一定时间之后再执行想执行的代码:

new Thread(new Runnable(){

Thead.sleep(4*1000);

doTask();

}).start()

2.他们的各自的实现原理?

答:

1.Timer的实现,是通过内部开启一个TimerThread:

private void mainLoop() {

while (true) {

try {

TimerTask task;

boolean taskFired;

synchronized(queue) {

// Wait for queue to become non-empty

while (queue.isEmpty() && newTasksMayBeScheduled)

queue.wait();

if (queue.isEmpty())

break; // Queue is empty and will forever remain; die

// Queue nonempty; look at first evt and do the right thing

long currentTime, executionTime;

task = queue.getMin();

synchronized(task.lock) {

if (task.state == TimerTask.CANCELLED) {

queue.removeMin();

continue; // No action required, poll queue again

}

currentTime = System.currentTimeMillis();

executionTime = task.nextExecutionTime;

if (taskFired = (executionTime<=currentTime)) {

if (task.period == 0) { // Non-repeating, remove

queue.removeMin();

task.state = TimerTask.EXECUTED;

} else { // Repeating task, reschedule

queue.rescheduleMin(

task.period<0 ? currentTime - task.period

: executionTime + task.period);

}

}

}

if (!taskFired) // Task hasn't yet fired; wait

queue.wait(executionTime - currentTime);

}

if (taskFired) // Task fired; run it, holding no locks

task.run();

} catch(InterruptedException e) {

}

}

}

是通过wait和延迟时间到达的时候,调用notify来唤起线程继续执行,这样来实现延迟的话,我们可以回开启一个新的线程,貌似为了个延迟没必要这样吧,定时,频繁执行的任务,再考虑这个吧。

2.Handler的postDelay是通过设置Message的when为delay的时间,我们知道当我们的应用开启的时候,会同步开启Looper.loop()方法循环的,不停的通过MeassgeQueue的next方法:

Message next() {

......

int nextPollTimeoutMillis = 0;

for (;;) {

if (nextPollTimeoutMillis != 0) {

Binder.flushPendingCommands();

}

nativePollOnce(ptr, nextPollTimeoutMillis);

synchronized (this) {

// Try to retrieve the next message. Return if found.

final long now = SystemClock.uptimeMillis();

Message prevMsg = null;

Message msg = mMessages;

if (msg != null && msg.target == null) {

// Stalled by a barrier. Find the next asynchronous message in the queue.

do {

prevMsg = msg;

msg = msg.next;

} while (msg != null && !msg.isAsynchronous());

}

if (msg != null) {

if (now < msg.when) {

// Next message is not ready. Set a timeout to wake up when it is ready.

nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);

} else {

// Got a message.

mBlocked = false;

if (prevMsg != null) {

prevMsg.next = msg.next;

} else {

mMessages = msg.next;

}

msg.next = null;

if (DEBUG) Log.v(TAG, "Returning message: " + msg);

msg.markInUse();

return msg;

}

} else {

// No more messages.

nextPollTimeoutMillis = -1;

}

......

}

}

当我们向MessageQueue插入一条延迟的Message的时候,Looper在执行loop方法,底层会调用epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);其中的timeoutMillis参数指定了在没有事件发生的时候epoll_wait调用阻塞的毫秒数(milliseconds)。这样我们在之前的时间内这个时候阻塞了是会释放cpu的资源,等到延迟的时间到了时候,再监控到事件发生。在这里可能有人会有疑问,一直阻塞,那我接下来的消息应该怎么执行呢?

我们可以看到当我们插入消息的时候的方法:

boolean enqueueMessage(Message msg, long when) {

if (msg.target == null) {

throw new IllegalArgumentException("Message must have a target.");

}

if (msg.isInUse()) {

throw new IllegalStateException(msg + " This message is already in use.");

}

synchronized (this) {

if (mQuitting) {

IllegalStateException e = new IllegalStateException(

msg.target + " sending message to a Handler on a dead thread");

Log.w(TAG, e.getMessage(), e);

msg.recycle();

return false;

}

msg.markInUse();

msg.when = when;

Message p = mMessages;

boolean needWake;

if (p == null || when == 0 || when < p.when) {

msg.next = p;

mMessages = msg;

needWake = mBlocked;

} else {

needWake = mBlocked && p.target == null && msg.isAsynchronous();

Message prev;

for (;;) {

prev = p;

p = p.next;

if (p == null || when < p.when) {

break;

}

if (needWake && p.isAsynchronous()) {

needWake = false;

}

}

msg.next = p; // invariant: p == prev.next

prev.next = msg;

}

mQuitting is false.

if (needWake) {

nativeWake(mPtr);

}

}

return true;

}

阻塞了有两种方式唤醒,一种是超时了,一种是被主动唤醒了,在上面我们可以看到当有消息进入的时候,我们会唤醒继续执行,所以我们的即时消息在延迟消息之后插入是没有关系的。然后在延迟时间到了的时候,我们也会被唤醒,执行对应的消息send,以达到延迟时间执行某个任务的目的。

优势:这种延迟在阻塞的时候,是会释放cpu的锁,不会过多地占用cpu的资源。

3.AlarmManager的延迟的实现原理,是通过一个AlarmManager的set方法:

IAlarmManager mService.set(mPackageName, type, triggerAtMillis, windowMillis, intervalMillis, flags,

operation, recipientWrapper, listenerTag, workSource, alarmClock);

这里是通过aidl与AlarmManagerService的所在进程进行通信,具体的实现是在AlarmManagerService类里面:

private final IBinder mService = new IAlarmManager.Stub() {

@Override

public void set(String callingPackage,

int type, long triggerAtTime, long windowLength, long interval, int flags,

PendingIntent operation, IAlarmListener directReceiver, String listenerTag,

WorkSource workSource, AlarmManager.AlarmClockInfo alarmClock) {

final int callingUid = Binder.getCallingUid();

if (interval != 0) {

if (directReceiver != null) {

throw new IllegalArgumentException("Repeating alarms cannot use AlarmReceivers");

}

}

if (workSource != null) {

getContext().enforcePermission(

android.Manifest.permission.UPDATE_DEVICE_STATS,

Binder.getCallingPid(), callingUid, "AlarmManager.set");

}

// No incoming callers can request either WAKE_FROM_IDLE or

// ALLOW_WHILE_IDLE_UNRESTRICTED -- we will apply those later as appropriate.

flags &= ~(AlarmManager.FLAG_WAKE_FROM_IDLE

| AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED);

// Only the system can use FLAG_IDLE_UNTIL -- this is used to tell the alarm

// manager when to come out of idle mode, which is only for DeviceIdleController.

if (callingUid != Process.SYSTEM_UID) {

flags &= ~AlarmManager.FLAG_IDLE_UNTIL;

}

if (windowLength == AlarmManager.WINDOW_EXACT) {

flags |= AlarmManager.FLAG_STANDALONE;

}

if (alarmClock != null) {

flags |= AlarmManager.FLAG_WAKE_FROM_IDLE | AlarmManager.FLAG_STANDALONE;

} else if (workSource == null && (callingUid < Process.FIRST_APPLICATION_UID

|| Arrays.binarySearch(mDeviceIdleUserWhitelist,

UserHandle.getAppId(callingUid)) >= 0)) {

flags |= AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED;

flags &= ~AlarmManager.FLAG_ALLOW_WHILE_IDLE;

}

setImpl(type, triggerAtTime, windowLength, interval, operation, directReceiver,

listenerTag, flags, workSource, alarmClock, callingUid, callingPackage);

}

}

}

虽然有人觉得用AlarmManager能够在应用关闭的情况下,定时器还能再唤起,经过自己的测试,当杀掉应用程序的进程,AlarmManager的receiver也是接收不到消息的,但是我相信在这里定时器肯定是发送了,但是作为接收方的应用程序进程被杀掉了,执行不了对应的代码。不过有人也觉得AlarmManager更耗电,是因为我们执行定时任务的情况会频繁唤起cpu,但是如果只是用来只是执行延迟任务的话,个人觉得和Handler.postDelayed()相比应该也不会耗电多的。

2.在上面的第四种方法,达到的延迟会一直通过Thread.sleep来达到延迟的话,会一直占用cpu的资源,这种方法不赞同使用。

3.总结

如上面我们看到的这样,如果是单纯的实现一个任务的延迟的话,我们可以用Handler.postDelayed()和AlarmManager.set()来实现,用(4)的方法Thread.sleep()的话,首先开启一个新的线程,然后会持有cpu的资源,用(1)的方法,Timer,会开启一个死循环的线程,这样在资源上面都有点浪费。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

以上是 Android延迟实现的几种解决方法及原理分析 的全部内容, 来源链接: utcz.com/z/319412.html

回到顶部