分分钟入门python语言

Python 是 90 年代初由 Guido Van Rossum 创立的。它是当前最流行的程序语言之一。它那纯净的语法令我一见倾心,它简直就是可以运行的伪码。

请注意:本文以 Python 2.7 为基准,但也应该适用于所有 2.X 版本。还要继续学习最新的 Python 3 哦!

# Single line comments start with a hash.

# 单行注释由一个井号开头。

""" Multiline strings can be written

using three "'s, and are often used

as comments

三个双引号(或单引号)之间可以写多行字符串,

通常用来写注释。

"""

####################################################

## 1. Primitive Datatypes and Operators

## 1. 基本数据类型和操作符

####################################################

# You have numbers

# 数字就是数字

3 #=> 3

# Math is what you would expect

# 四则运算也是你所期望的那样

1 + 1 #=> 2

8 - 1 #=> 7

10 * 2 #=> 20

35 / 5 #=> 7

# Division is a bit tricky. It is integer division and floors the results

# automatically.

# 除法有一点棘手。

# 对于整数除法来说,计算结果会自动取整。

5 / 2 #=> 2

# To fix division we need to learn about floats.

# 为了修正除法的问题,我们需要先学习浮点数。

2.0 # This is a float

2.0 # 这是一个浮点数

11.0 / 4.0 #=> 2.75 ahhh...much better

11.0 / 4.0 #=> 2.75 啊……这样就好多了

# Enforce precedence with parentheses

# 使用小括号来强制计算的优先顺序

(1 + 3) * 2 #=> 8

# Boolean values are primitives

# 布尔值也是基本数据类型

True

False

# negate with not

# 使用 not 来取反

not True #=> False

not False #=> True

# Equality is ==

# 等式判断用 ==

1 == 1 #=> True

2 == 1 #=> False

# Inequality is !=

# 不等式判断是用 !=

1 != 1 #=> False

2 != 1 #=> True

# More comparisons

# 还有更多的比较运算

1 < 10 #=> True

1 > 10 #=> False

2 <= 2 #=> True

2 >= 2 #=> True

# Comparisons can be chained!

# 居然可以把比较运算串连起来!

1 < 2 < 3 #=> True

2 < 3 < 2 #=> False

# Strings are created with " or '

# 使用 " 或 ' 来创建字符串

"This is a string."

'This is also a string.'

# Strings can be added too!

# 字符串也可以相加!

"Hello " + "world!" #=> "Hello world!"

# A string can be treated like a list of characters

# 一个字符串可以视为一个字符的列表

# (译注:后面会讲到“列表”。)

"This is a string"[0] #=> 'T'

# % can be used to format strings, like this:

# % 可以用来格式化字符串,就像这样:

"%s can be %s" % ("strings", "interpolated")

# A newer way to format strings is the format method.

# This method is the preferred way

# 后来又有一种格式化字符串的新方法:format 方法。

# 我们推荐使用这个方法。

"{0} can be {1}".format("strings", "formatted")

# You can use keywords if you don't want to count.

# 如果你不喜欢数数的话,可以使用关键字(变量)。

"{name} wants to eat {food}".format(name="Bob", food="lasagna")

# None is an object

# None 是一个对象

None #=> None

# Don't use the equality `==` symbol to compare objects to None

# Use `is` instead

# 不要使用相等符号 `==` 来把对象和 None 进行比较,

# 而要用 `is`。

"etc" is None #=> False

None is None #=> True

# The 'is' operator tests for object identity. This isn't

# very useful when dealing with primitive values, but is

# very useful when dealing with objects.

# 这个 `is` 操作符用于比较两个对象的标识。

# (译注:对象一旦建立,其标识就不会改变,可以认为它就是对象的内存地址。)

# 在处理基本数据类型时基本用不上,

# 但它在处理对象时很有用。

# None, 0, and empty strings/lists all evaluate to False.

# All other values are True

# None、0 以及空字符串和空列表都等于 False,

# 除此以外的所有值都等于 True。

0 == False #=> True

"" == False #=> True

####################################################

## 2. Variables and Collections

## 2. 变量和集合

####################################################

# Printing is pretty easy

# 打印输出很简单

print "I'm Python. Nice to meet you!"

# No need to declare variables before assigning to them.

# 在赋值给变量之前不需要声明

some_var = 5 # Convention is to use lower_case_with_underscores

# 变量名的约定是使用下划线分隔的小写单词

some_var #=> 5

# Accessing a previously unassigned variable is an exception.

# See Control Flow to learn more about exception handling.

# 访问一个未赋值的变量会产生一个异常。

# 进一步了解异常处理,可参见下一节《控制流》。

some_other_var # Raises a name error

# 会抛出一个名称错误

# if can be used as an expression

# if 可以作为表达式来使用

"yahoo!" if 3 > 2 else 2 #=> "yahoo!"

# Lists store sequences

# 列表用于存储序列

li = []

# You can start with a prefilled list

# 我们先尝试一个预先填充好的列表

other_li = [4, 5, 6]

# Add stuff to the end of a list with append

# 使用 append 方法把元素添加到列表的尾部

li.append(1) #li is now [1]

#li 现在是 [1]

li.append(2) #li is now [1, 2]

#li 现在是 [1, 2]

li.append(4) #li is now [1, 2, 4]

#li 现在是 [1, 2, 4]

li.append(3) #li is now [1, 2, 4, 3]

#li 现在是 [1, 2, 4, 3]

# Remove from the end with pop

# 使用 pop 来移除最后一个元素

li.pop() #=> 3 and li is now [1, 2, 4]

#=> 3,然后 li 现在是 [1, 2, 4]

# Let's put it back

# 我们再把它放回去

li.append(3) # li is now [1, 2, 4, 3] again.

# li 现在又是 [1, 2, 4, 3] 了

# Access a list like you would any array

# 像访问其它语言的数组那样访问列表

li[0] #=> 1

# Look at the last element

# 查询最后一个元素

li[-1] #=> 3

# Looking out of bounds is an IndexError

# 越界查询会产生一个索引错误

li[4] # Raises an IndexError

# 抛出一个索引错误

# You can look at ranges with slice syntax.

# (It's a closed/open range for you mathy types.)

# 你可以使用切片语法来查询列表的一个范围。

# (这个范围相当于数学中的左闭右开区间。)

li[1:3] #=> [2, 4]

# Omit the beginning

# 省略开头

li[2:] #=> [4, 3]

# Omit the end

# 省略结尾

li[:3] #=> [1, 2, 4]

# Remove arbitrary elements from a list with del

# 使用 del 来删除列表中的任意元素

del li[2] # li is now [1, 2, 3]

# li 现在是 [1, 2, 3]

# You can add lists

# 可以把列表相加

li + other_li #=> [1, 2, 3, 4, 5, 6] - Note: li and other_li is left alone

#=> [1, 2, 3, 4, 5, 6] - 请留意 li 和 other_li 并不会被修改

# Concatenate lists with extend

# 使用 extend 来合并列表

li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]

# 现在 li 是 [1, 2, 3, 4, 5, 6]

# Check for existence in a list with in

# 用 in 来检查是否存在于某个列表中

1 in li #=> True

# Examine the length with len

# 用 len 来检测列表的长度

len(li) #=> 6

# Tuples are like lists but are immutable.

# 元组很像列表,但它是“不可变”的。

tup = (1, 2, 3)

tup[0] #=> 1

tup[0] = 3 # Raises a TypeError

# 抛出一个类型错误

# You can do all those list thingies on tuples too

# 操作列表的方式通常也能用在元组身上

len(tup) #=> 3

tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)

tup[:2] #=> (1, 2)

2 in tup #=> True

# You can unpack tuples (or lists) into variables

# 你可以把元组(或列表)中的元素解包赋值给多个变量

a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3

# 现在 a 是 1,b 是 2,c 是 3

# Tuples are created by default if you leave out the parentheses

# 如果你省去了小括号,那么元组会被自动创建

d, e, f = 4, 5, 6

# Now look how easy it is to swap two values

# 再来看看交换两个值是多么简单。

e, d = d, e # d is now 5 and e is now 4

# 现在 d 是 5 而 e 是 4

# Dictionaries store mappings

# 字典用于存储映射关系

empty_dict = {}

# Here is a prefilled dictionary

# 这是一个预先填充的字典

filled_dict = {"one": 1, "two": 2, "three": 3}

# Look up values with []

# 使用 [] 来查询键值

filled_dict["one"] #=> 1

# Get all keys as a list

# 将字典的所有键名获取为一个列表

filled_dict.keys() #=> ["three", "two", "one"]

# Note - Dictionary key ordering is not guaranteed.

# Your results might not match this exactly.

# 请注意:无法保证字典键名的顺序如何排列。

# 你得到的结果可能跟上面的示例不一致。

# Get all values as a list

# 将字典的所有键值获取为一个列表

filled_dict.values() #=> [3, 2, 1]

# Note - Same as above regarding key ordering.

# 请注意:顺序的问题和上面一样。

# Check for existence of keys in a dictionary with in

# 使用 in 来检查一个字典是否包含某个键名

"one" in filled_dict #=> True

1 in filled_dict #=> False

# Looking up a non-existing key is a KeyError

# 查询一个不存在的键名会产生一个键名错误

filled_dict["four"] # KeyError

# 键名错误

# Use get method to avoid the KeyError

# 所以要使用 get 方法来避免键名错误

filled_dict.get("one") #=> 1

filled_dict.get("four") #=> None

# The get method supports a default argument when the value is missing

# get 方法支持传入一个默认值参数,将在取不到值时返回。

filled_dict.get("one", 4) #=> 1

filled_dict.get("four", 4) #=> 4

# Setdefault method is a safe way to add new key-value pair into dictionary

# Setdefault 方法可以安全地把新的名值对添加到字典里

filled_dict.setdefault("five", 5) #filled_dict["five"] is set to 5

#filled_dict["five"] 被设置为 5

filled_dict.setdefault("five", 6) #filled_dict["five"] is still 5

#filled_dict["five"] 仍然为 5

# Sets store ... well sets

# set 用于保存集合

empty_set = set()

# Initialize a set with a bunch of values

# 使用一堆值来初始化一个集合

some_set = set([1,2,2,3,4]) # some_set is now set([1, 2, 3, 4])

# some_set 现在是 set([1, 2, 3, 4])

# Since Python 2.7, {} can be used to declare a set

# 从 Python 2.7 开始,{} 可以用来声明一个集合

filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4}

# (译注:集合是种无序不重复的元素集,因此重复的 2 被滤除了。)

# (译注:{} 不会创建一个空集合,只会创建一个空字典。)

# Add more items to a set

# 把更多的元素添加进一个集合

filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}

# filled_set 现在是 {1, 2, 3, 4, 5}

# Do set intersection with &

# 使用 & 来获取交集

other_set = {3, 4, 5, 6}

filled_set & other_set #=> {3, 4, 5}

# Do set union with |

# 使用 | 来获取并集

filled_set | other_set #=> {1, 2, 3, 4, 5, 6}

# Do set difference with -

# 使用 - 来获取补集

{1,2,3,4} - {2,3,5} #=> {1, 4}

# Check for existence in a set with in

# 使用 in 来检查是否存在于某个集合中

2 in filled_set #=> True

10 in filled_set #=> False

####################################################

## 3. Control Flow

## 3. 控制流

####################################################

# Let's just make a variable

# 我们先创建一个变量

some_var = 5

# Here is an if statement. Indentation is significant in python!

# prints "some_var is smaller than 10"

# 这里有一个条件语句。缩进在 Python 中可是很重要的哦!

# 程序会打印出 "some_var is smaller than 10"

# (译注:意为“some_var 比 10 小”。)

if some_var > 10:

print "some_var is totally bigger than 10."

# (译注:意为“some_var 完全比 10 大”。)

elif some_var < 10: # This elif clause is optional.

# 这里的 elif 子句是可选的

print "some_var is smaller than 10."

# (译注:意为“some_var 比 10 小”。)

else: # This is optional too.

# 这一句也是可选的

print "some_var is indeed 10."

# (译注:意为“some_var 就是 10”。)

"""

For loops iterate over lists

for 循环可以遍历列表

prints:

如果要打印出:

dog is a mammal

cat is a mammal

mouse is a mammal

"""

for animal in ["dog", "cat", "mouse"]:

# You can use % to interpolate formatted strings

# 别忘了你可以使用 % 来格式化字符串

print "%s is a mammal" % animal

# (译注:意为“%s 是哺乳动物”。)

"""

`range(number)` returns a list of numbers

from zero to the given number

`range(数字)` 会返回一个数字列表,

这个列表将包含从零到给定的数字。

prints:

如果要打印出:

0

1

2

3

"""

for i in range(4):

print i

"""

While loops go until a condition is no longer met.

while 循环会一直继续,直到条件不再满足。

prints:

如果要打印出:

0

1

2

3

"""

x = 0

while x < 4:

print x

x += 1 # Shorthand for x = x + 1

# 这是 x = x + 1 的简写方式

# Handle exceptions with a try/except block

# 使用 try/except 代码块来处理异常

# Works on Python 2.6 and up:

# 适用于 Python 2.6 及以上版本:

try:

# Use raise to raise an error

# 使用 raise 来抛出一个错误

raise IndexError("This is an index error")

# 抛出一个索引错误:“这是一个索引错误”。

except IndexError as e:

pass # Pass is just a no-op. Usually you would do recovery here.

# pass 只是一个空操作。通常你应该在这里做一些恢复工作。

####################################################

## 4. Functions

## 4. 函数

####################################################

# Use def to create new functions

# 使用 def 来创建新函数

def add(x, y):

print "x is %s and y is %s" % (x, y)

# (译注:意为“x 是 %s 而且 y 是 %s”。)

return x + y # Return values with a return statement

# 使用 return 语句来返回值

# Calling functions with parameters

# 调用函数并传入参数

add(5, 6) #=> prints out "x is 5 and y is 6" and returns 11

# (译注:意为“x 是 5 而且 y 是 6”,并返回 11)

# Another way to call functions is with keyword arguments

# 调用函数的另一种方式是传入关键字参数

add(y=6, x=5) # Keyword arguments can arrive in any order.

# 关键字参数可以以任意顺序传入

# You can define functions that take a variable number of

# positional arguments

# 你可以定义一个函数,并让它接受可变数量的定位参数。

def varargs(*args):

return args

varargs(1, 2, 3) #=> (1,2,3)

# You can define functions that take a variable number of

# keyword arguments, as well

# 你也可以定义一个函数,并让它接受可变数量的关键字参数。

def keyword_args(**kwargs):

return kwargs

# Let's call it to see what happens

# 我们试着调用它,看看会发生什么:

keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"}

# You can do both at once, if you like

# 你还可以同时使用这两类参数,只要你愿意:

def all_the_args(*args, **kwargs):

print args

print kwargs

"""

all_the_args(1, 2, a=3, b=4) prints:

(1, 2)

{"a": 3, "b": 4}

"""

# When calling functions, you can do the opposite of varargs/kwargs!

# Use * to expand tuples and use ** to expand kwargs.

# 在调用函数时,定位参数和关键字参数还可以反过来用。

# 使用 * 来展开元组,使用 ** 来展开关键字参数。

args = (1, 2, 3, 4)

kwargs = {"a": 3, "b": 4}

all_the_args(*args) # equivalent to foo(1, 2, 3, 4)

# 相当于 all_the_args(1, 2, 3, 4)

all_the_args(**kwargs) # equivalent to foo(a=3, b=4)

# 相当于 all_the_args(a=3, b=4)

all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)

# 相当于 all_the_args(1, 2, 3, 4, a=3, b=4)

# Python has first class functions

# 函数在 Python 中是一等公民

def create_adder(x):

def adder(y):

return x + y

return adder

add_10 = create_adder(10)

add_10(3) #=> 13

# There are also anonymous functions

# 还有匿名函数

(lambda x: x > 2)(3) #=> True

# There are built-in higher order functions

# 还有一些内建的高阶函数

map(add_10, [1,2,3]) #=> [11, 12, 13]

filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]

# We can use list comprehensions for nice maps and filters

# 我们可以使用列表推导式来模拟 map 和 filter

[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]

[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]

####################################################

## 5. Classes

## 5. 类

####################################################

# We subclass from object to get a class.

# 我们可以从对象中继承,来得到一个类。

class Human(object):

# A class attribute. It is shared by all instances of this class

# 下面是一个类属性。它将被这个类的所有实例共享。

species = "H. sapiens"

# Basic initializer

# 基本的初始化函数(构造函数)

def __init__(self, name):

# Assign the argument to the instance's name attribute

# 把参数赋值为实例的 name 属性

self.name = name

# An instance method. All methods take self as the first argument

# 下面是一个实例方法。所有方法都以 self 作为第一个参数。

def say(self, msg):

return "%s: %s" % (self.name, msg)

# A class method is shared among all instances

# They are called with the calling class as the first argument

# 类方法会被所有实例共享。

# 类方法在调用时,会将类本身作为第一个函数传入。

@classmethod

def get_species(cls):

return cls.species

# A static method is called without a class or instance reference

# 静态方法在调用时,不会传入类或实例的引用。

@staticmethod

def grunt():

return "*grunt*"

# Instantiate a class

# 实例化一个类

i = Human(name="Ian")

print i.say("hi") # prints out "Ian: hi"

# 打印出 "Ian: hi"

j = Human("Joel")

print j.say("hello") # prints out "Joel: hello"

# 打印出 "Joel: hello"

# Call our class method

# 调用我们的类方法

i.get_species() #=> "H. sapiens"

# Change the shared attribute

# 修改共享属性

Human.species = "H. neanderthalensis"

i.get_species() #=> "H. neanderthalensis"

j.get_species() #=> "H. neanderthalensis"

# Call the static method

# 调用静态方法

Human.grunt() #=> "*grunt*"

####################################################

## 6. Modules

## 6. 模块

####################################################

# You can import modules

# 你可以导入模块

import math

print math.sqrt(16) #=> 4

# You can get specific functions from a module

# 也可以从一个模块中获取指定的函数

from math import ceil, floor

print ceil(3.7) #=> 4.0

print floor(3.7) #=> 3.0

# You can import all functions from a module.

# Warning: this is not recommended

# 你可以从一个模块中导入所有函数

# 警告:不建议使用这种方式

from math import *

# You can shorten module names

# 你可以缩短模块的名称

import math as m

math.sqrt(16) == m.sqrt(16) #=> True

# Python modules are just ordinary python files. You

# can write your own, and import them. The name of the

# module is the same as the name of the file.

# Python 模块就是普通的 Python 文件。

# 你可以编写你自己的模块,然后导入它们。

# 模块的名称与文件名相同。

# You can find out which functions and attributes

# defines a module.

# 你可以查出一个模块里有哪些函数和属性

import math

dir(math)

Source File: adambard/learnxinyminutes-docs - GitHub

Translated by: cssmagic

以上是 分分钟入门python语言 的全部内容, 来源链接: utcz.com/z/319228.html

回到顶部