Pandas 按索引合并数据集的方法
如下所示:
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
一、merge函数
left1 = DataFrame({'水果':['苹果','梨','草莓'],
'价格':[3,4,5],
'数量':[9,8,7]}).set_index('水果')
right1 = DataFrame({'水果':['苹果','草莓'],
'产地':['美国','中国']})
print(left1)
print(right1)
价格 数量
水果
苹果 3 9
梨 4 8
草莓 5 7
产地 水果
0 美国 苹果
1 中国 草莓
print(pd.merge(left1,right1,right_on='水果',left_index=True,how='outer'))
价格 数量 产地 水果
0 3 9 美国 苹果
1 4 8 NaN 梨
1 5 7 中国 草莓
二、DataFrame的join函数
left2 = left1
right2 = right1.set_index('水果')
1.join函数默认将两个DataFrame的index进行合并
print(left2.join(right2))
价格 数量 产地
水果
苹果 3 9 美国
梨 4 8 NaN
草莓 5 7 中国
2.若其中一个DataFrame合并的键不在索引上,可使用on参数
print(right1.join(left1,on='水果',how='outer'))
产地 水果 价格 数量
0 美国 苹果 3 9
1 中国 草莓 5 7
1 NaN 梨 4 8
3.多个DataFrame按索引合并
another = DataFrame({'水果':['苹果','香蕉','梨'],
'品质':['AA','AAAA','A']}).set_index('水果')
print(left2.join([right2,another],how='outer'))
价格 数量 产地 品质
梨 4.0 8.0 NaN A
苹果 3.0 9.0 美国 AA
草莓 5.0 7.0 中国 NaN
香蕉 NaN NaN NaN AAAA
以上这篇Pandas 按索引合并数据集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
以上是 Pandas 按索引合并数据集的方法 的全部内容, 来源链接: utcz.com/z/318872.html