Python实现曲线拟合的最小二乘法

本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下

模块导入

import numpy as np

import gaosi as gs

代码

"""

本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解。

"""

import numpy as np

import gaosi as gs

shape = int(input('请输入拟合函数的次数:'))

x = np.array([0.6,1.3,1.64,1.8,2.1,2.3,2.44])

y = np.array([7.05,12.2,14.4,15.2,17.4,19.6,20.2])

data = []

for i in range(shape*2+1):

if i != 0:

data.append(np.sum(x**i))

else:

data.append(len(x))

b = []

for i in range(shape+1):

if i != 0:

b.append(np.sum(y*x**i))

else:

b.append(np.sum(y))

b = np.array(b).reshape(shape+1,1)

n = np.zeros([shape+1,shape+1])

for i in range(shape+1):

for j in range(shape+1):

n[i][j] = data[i+j]

result = gs.Handle(n,b)

if not result:

print('增广矩阵求解失败!')

exit()

fun='f(x) = '

for i in range(len(result)):

if type(result[i]) == type(''):

print('存在自由变量!')

fun = fun + str(result[i])

elif i == 0:

fun = fun + '{:.3f}'.format(result[i])

else:

fun = fun + '+{0:.3f}*x^{1}'.format(result[i],i)

print('求得{0}次拟合函数为:'.format(shape))

print(fun)

高斯模块

# 导入 numpy 模块

import numpy as np

# 行交换

def swap_row(matrix, i, j):

m, n = matrix.shape

if i >= m or j >= m:

print('错误! : 行交换超出范围 ...')

else:

matrix[i],matrix[j] = matrix[j].copy(),matrix[i].copy()

return matrix

# 变成阶梯矩阵

def matrix_change(matrix):

m, n = matrix.shape

main_factor = []

main_col = main_row = 0

while main_row < m and main_col < n:

# 选择进行下一次主元查找的列

main_row = len(main_factor)

# 寻找列中非零的元素

not_zeros = np.where(abs(matrix[main_row:,main_col]) > 0)[0]

# 如果该列向下全部数据为零,则直接跳过列

if len(not_zeros) == 0:

main_col += 1

continue

else:

# 将主元列号保存在列表中

main_factor.append(main_col)

# 将第一个非零行交换至最前

if not_zeros[0] != [0]:

matrix = swap_row(matrix,main_row,main_row+not_zeros[0])

# 将该列主元下方所有元素变为零

if main_row < m-1:

for k in range(main_row+1,m):

a = float(matrix[k, main_col] / matrix[main_row, main_col])

matrix[k] = matrix[k] - matrix[main_row] * matrix[k, main_col] / matrix[main_row, main_col]

main_col += 1

return matrix,main_factor

# 回代求解

def back_solve(matrix, main_factor):

# 判断是否有解

if len(main_factor) == 0:

print('主元错误,无主元! ...')

return None

m, n = matrix.shape

if main_factor[-1] == n - 1:

print('无解! ...')

return None

# 把所有的主元元素上方的元素变成0

for i in range(len(main_factor) - 1, -1, -1):

factor = matrix[i, main_factor[i]]

matrix[i] = matrix[i] / float(factor)

for j in range(i):

times = matrix[j, main_factor[i]]

matrix[j] = matrix[j] - float(times) * matrix[i]

# 先看看结果对不对

return matrix

# 结果打印

def print_result(matrix, main_factor):

if matrix is None:

print('阶梯矩阵为空! ...')

return None

m, n = matrix.shape

result = [''] * (n - 1)

main_factor = list(main_factor)

for i in range(n - 1):

# 如果不是主元列,则为自由变量

if i not in main_factor:

result[i] = '(free var)'

# 否则是主元变量,从对应的行,将主元变量表示成非主元变量的线性组合

else:

# row_of_main表示该主元所在的行

row_of_main = main_factor.index(i)

result[i] = matrix[row_of_main, -1]

return result

# 得到简化的阶梯矩阵和主元列

def Handle(matrix_a, matrix_b):

# 拼接成增广矩阵

matrix_01 = np.hstack([matrix_a, matrix_b])

matrix_01, main_factor = matrix_change(matrix_01)

matrix_01 = back_solve(matrix_01, main_factor)

result = print_result(matrix_01, main_factor)

return result

if __name__ == '__main__':

a = np.array([[2, 1, 1], [3, 1, 2], [1, 2, 2]],dtype=float)

b = np.array([[4],[6],[5]],dtype=float)

a = Handle(a, b)

以上是 Python实现曲线拟合的最小二乘法 的全部内容, 来源链接: utcz.com/z/317568.html

回到顶部