Android消息循环机制源码深入理解

Android消息循环机制源码

前言:

搞Android的不懂Handler消息循环机制,都不好意思说自己是Android工程师。面试的时候一般也都会问这个知识点,但是我相信大多数码农肯定是没有看过相关源码的,顶多也就是网上搜搜,看看别人的文章介绍。学姐不想把那个万能的关系图拿出来讨论。

近来找了一些关于android线程间通信的资料,整理学习了一下,并制作了一个简单的例子。

 andriod提供了 Handler 和 Looper 来满足线程间的通信。例如一个子线程从网络上下载了一副图片,当它下载完成后会发送消息给主线程,这个消息是通过绑定在主线程的Handler来传递的。

在Android,这里的线程分为有消息循环的线程和没有消息循环的线程,有消息循环的线程一般都会有一个Looper,这个事android的新 概念。我们的主线程(UI线程)就是一个消息循环的线程。针对这种消息循环的机制,我们引入一个新的机制Handle,我们有消息循环,就要往消息循环里 面发送相应的消息,自定义消息一般都会有自己对应的处理,消息的发送和清除,消息的的处理,把这些都封装在Handle里面,注意Handle只是针对那 些有Looper的线程,不管是UI线程还是子线程,只要你有Looper,我就可以往你的消息队列里面添加东西,并做相应的处理。

但是这里还有一点,就是只要是关于UI相关的东西,就不能放在子线程中,因为子线程是不能操作UI的,只能进行数据、系统等其他非UI的操作。

  在Android,这里的线程分为有消息循环的线程和没有消息循环的线程,有消息循环的线程一般都会有一个Looper,这个是android的新概念。我们的主线程(UI线程)就是一个消息循环的线程。针对这种消息循环的机制,我们引入一个新的机制Handler,我们有消息循环,就要往消息循环里面发送相应的消息,自定义消息一般都会有自己对应的处理,消息的发送和清除,把这些都封装在Handler里面,注意Handler只是针对那 些有Looper的线程,不管是UI线程还是子线程,只要你有Looper,我就可以往你的消息队列里面添加东西,并做相应的处理。

但是这里还有一点,就是只要是关于UI相关的东西,就不能放在子线程中,因为子线程是不能操作UI的,只能进行数据、系统等其他非UI的操作。

先从我们平时的使用方法引出这个机制,再结合源码进行分析。

我们平时使用是这样的:

//1. 主线程

Handler handler = new MyHandler();

//2. 非主线程

HandlerThread handlerThread = new HandlerThread("handlerThread");

handlerThread.start();

Handler handler = new Handler(handlerThread.getLooper());

//发送消息

handler.sendMessage(msg);

//接收消息

static class MyHandler extends Handler {

//对于非主线程处理消息需要传Looper,主线程有默认的sMainLooper

public MyHandler(Looper looper) {

super(looper);

}

@Override

public void handleMessage(Message msg) {

super.handleMessage(msg);

}

}

那么为什么初始化的时候,我们执行了1或2,后面只需要sendMessage就可处理任务了呢?学姐这里以非主线程为例进行介绍,handlerThread.start()的时候,实际上创建了一个用于消息循环的Looper和消息队列MessageQueue,同时启动了消息循环,并将这个循环传给Handler,这个循环会从MessageQueue中依次取任务出来执行。用户若要执行某项任务,只需要调用handler.sendMessage即可,这里做的事情是将消息添加到MessaeQueue中。对于主线程也类似,只是主线程sMainThread和sMainLooper不需要我们主动去创建,程序启动的时候Application就创建好了,我们只需要创建Handler即可。

我们这里提到了几个概念:

  • HandlerThread 支持消息循环的线程
  • Handler 消息处理器
  • Looper 消息循环对象
  • MessageQueue 消息队列
  • Message 消息体

对应关系是:一对多,即(一个)HandlerThread、Looper、MessageQueue -> (多个)Handler、Message

源码解析

1. Looper

(1)创建消息循环

prepare()用于创建Looper消息循环对象。Looper对象通过一个成员变量ThreadLocal进行保存。

(2)获取消息循环对象

myLooper()用于获取当前消息循环对象。Looper对象从成员变量ThreadLocal中获取。

(3)开始消息循环

loop()开始消息循环。循环过程如下:

每次从消息队列MessageQueue中取出一个Message

使用Message对应的Handler处理Message

已处理的Message加到本地消息池,循环复用

循环以上步骤,若没有消息表明消息队列停止,退出循环

public static void prepare() {

prepare(true);

}

private static void prepare(boolean quitAllowed) {

if (sThreadLocal.get() != null) {

throw new RuntimeException("Only one Looper may be created per thread");

}

sThreadLocal.set(new Looper(quitAllowed));

}

public static Looper myLooper() {

return sThreadLocal.get();

}

public static void loop() {

final Looper me = myLooper();

if (me == null) {

throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");

}

final MessageQueue queue = me.mQueue;

// Make sure the identity of this thread is that of the local process,

// and keep track of what that identity token actually is.

Binder.clearCallingIdentity();

final long ident = Binder.clearCallingIdentity();

for (;;) {

Message msg = queue.next(); // might block

if (msg == null) {

// No message indicates that the message queue is quitting.

return;

}

// This must be in a local variable, in case a UI event sets the logger

Printer logging = me.mLogging;

if (logging != null) {

logging.println(">>>>> Dispatching to " + msg.target + " " +

msg.callback + ": " + msg.what);

}

msg.target.dispatchMessage(msg);

if (logging != null) {

logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);

}

// Make sure that during the course of dispatching the

// identity of the thread wasn't corrupted.

final long newIdent = Binder.clearCallingIdentity();

if (ident != newIdent) {

Log.wtf(TAG, "Thread identity changed from 0x"

+ Long.toHexString(ident) + " to 0x"

+ Long.toHexString(newIdent) + " while dispatching to "

+ msg.target.getClass().getName() + " "

+ msg.callback + " what=" + msg.what);

}

msg.recycleUnchecked();

}

}

2. Handler

(1)发送消息

Handler支持2种消息类型,即Runnable和Message。因此发送消息提供了post(Runnable r)和sendMessage(Message msg)两个方法。从下面源码可以看出Runnable赋值给了Message的callback,最终也是封装成Message对象对象。学姐个人认为外部调用不统一使用Message,应该是兼容Java的线程任务,学姐认为这种思想也可以借鉴到平常开发过程中。发送的消息都会入队到MessageQueue队列中。

(2)处理消息

Looper循环过程的时候,是通过dispatchMessage(Message msg)对消息进行处理。处理过程:先看是否是Runnable对象,如果是则调用handleCallback(msg)进行处理,最终调到Runnable.run()方法执行线程;如果不是Runnable对象,再看外部是否传入了Callback处理机制,若有则使用外部Callback进行处理;若既不是Runnable对象也没有外部Callback,则调用handleMessage(msg),这个也是我们开发过程中最常覆写的方法了。

(3)移除消息

removeCallbacksAndMessages(),移除消息其实也是从MessageQueue中将Message对象移除掉。

public void handleMessage(Message msg) {

}

public void dispatchMessage(Message msg) {

if (msg.callback != null) {

handleCallback(msg);

} else {

if (mCallback != null) {

if (mCallback.handleMessage(msg)) {

return;

}

}

handleMessage(msg);

}

}

private static void handleCallback(Message message) {

message.callback.run();

}

public final Message obtainMessage()

{

return Message.obtain(this);

}

public final boolean post(Runnable r)

{

return sendMessageDelayed(getPostMessage(r), 0);

}

public final boolean sendMessage(Message msg)

{

return sendMessageDelayed(msg, 0);

}

private static Message getPostMessage(Runnable r) {

Message m = Message.obtain();

m.callback = r;

return m;

}

public final boolean sendMessageDelayed(Message msg, long delayMillis)

{

if (delayMillis < 0) {

delayMillis = 0;

}

return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);

}

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {

MessageQueue queue = mQueue;

if (queue == null) {

RuntimeException e = new RuntimeException(

this + " sendMessageAtTime() called with no mQueue");

Log.w("Looper", e.getMessage(), e);

return false;

}

return enqueueMessage(queue, msg, uptimeMillis);

}

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {

msg.target = this;

if (mAsynchronous) {

msg.setAsynchronous(true);

}

return queue.enqueueMessage(msg, uptimeMillis);

}

public final void removeCallbacksAndMessages(Object token) {

mQueue.removeCallbacksAndMessages(this, token);

}

3. MessageQueue

(1)消息入队

消息入队方法enqueueMessage(Message msg, long when)。其处理过程如下:

待入队的Message标记为InUse,when赋值

若消息链表mMessages为空为空,或待入队Message执行时间小于mMessage链表头,则待入队Message添加到链表头

若不符合以上条件,则轮询链表,根据when从低到高的顺序,插入链表合适位置

(2)消息轮询

next()依次从MessageQueue中取出Message

(3)移除消息

removeMessages()可以移除消息,做的事情实际上就是将消息从链表移除,同时将移除的消息添加到消息池,提供循环复用。

boolean enqueueMessage(Message msg, long when) {

if (msg.target == null) {

throw new IllegalArgumentException("Message must have a target.");

}

if (msg.isInUse()) {

throw new IllegalStateException(msg + " This message is already in use.");

}

synchronized (this) {

if (mQuitting) {

IllegalStateException e = new IllegalStateException(

msg.target + " sending message to a Handler on a dead thread");

Log.w("MessageQueue", e.getMessage(), e);

msg.recycle();

return false;

}

msg.markInUse();

msg.when = when;

Message p = mMessages;

boolean needWake;

if (p == null || when == 0 || when < p.when) {

// New head, wake up the event queue if blocked.

msg.next = p;

mMessages = msg;

needWake = mBlocked;

} else {

// Inserted within the middle of the queue. Usually we don't have to wake

// up the event queue unless there is a barrier at the head of the queue

// and the message is the earliest asynchronous message in the queue.

needWake = mBlocked && p.target == null && msg.isAsynchronous();

Message prev;

for (;;) {

prev = p;

p = p.next;

if (p == null || when < p.when) {

break;

}

if (needWake && p.isAsynchronous()) {

needWake = false;

}

}

msg.next = p; // invariant: p == prev.next

prev.next = msg;

}

// We can assume mPtr != 0 because mQuitting is false.

if (needWake) {

nativeWake(mPtr);

}

}

return true;

}

Message next() {

// Return here if the message loop has already quit and been disposed.

// This can happen if the application tries to restart a looper after quit

// which is not supported.

final long ptr = mPtr;

if (ptr == 0) {

return null;

}

int pendingIdleHandlerCount = -1; // -1 only during first iteration

int nextPollTimeoutMillis = 0;

for (;;) {

if (nextPollTimeoutMillis != 0) {

Binder.flushPendingCommands();

}

nativePollOnce(ptr, nextPollTimeoutMillis);

synchronized (this) {

// Try to retrieve the next message. Return if found.

final long now = SystemClock.uptimeMillis();

Message prevMsg = null;

Message msg = mMessages;

if (msg != null && msg.target == null) {

// Stalled by a barrier. Find the next asynchronous message in the queue.

do {

prevMsg = msg;

msg = msg.next;

} while (msg != null && !msg.isAsynchronous());

}

if (msg != null) {

if (now < msg.when) {

// Next message is not ready. Set a timeout to wake up when it is ready.

nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);

} else {

// Got a message.

mBlocked = false;

if (prevMsg != null) {

prevMsg.next = msg.next;

} else {

mMessages = msg.next;

}

msg.next = null;

if (false) Log.v("MessageQueue", "Returning message: " + msg);

return msg;

}

} else {

// No more messages.

nextPollTimeoutMillis = -1;

}

// Process the quit message now that all pending messages have been handled.

if (mQuitting) {

dispose();

return null;

}

// If first time idle, then get the number of idlers to run.

// Idle handles only run if the queue is empty or if the first message

// in the queue (possibly a barrier) is due to be handled in the future.

if (pendingIdleHandlerCount < 0

&& (mMessages == null || now < mMessages.when)) {

pendingIdleHandlerCount = mIdleHandlers.size();

}

if (pendingIdleHandlerCount <= 0) {

// No idle handlers to run. Loop and wait some more.

mBlocked = true;

continue;

}

if (mPendingIdleHandlers == null) {

mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];

}

mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);

}

// Run the idle handlers.

// We only ever reach this code block during the first iteration.

for (int i = 0; i < pendingIdleHandlerCount; i++) {

final IdleHandler idler = mPendingIdleHandlers[i];

mPendingIdleHandlers[i] = null; // release the reference to the handler

boolean keep = false;

try {

keep = idler.queueIdle();

} catch (Throwable t) {

Log.wtf("MessageQueue", "IdleHandler threw exception", t);

}

if (!keep) {

synchronized (this) {

mIdleHandlers.remove(idler);

}

}

}

// Reset the idle handler count to 0 so we do not run them again.

pendingIdleHandlerCount = 0;

// While calling an idle handler, a new message could have been delivered

// so go back and look again for a pending message without waiting.

nextPollTimeoutMillis = 0;

}

}

void removeMessages(Handler h, int what, Object object) {

if (h == null) {

return;

}

synchronized (this) {

Message p = mMessages;

// Remove all messages at front.

while (p != null && p.target == h && p.what == what

&& (object == null || p.obj == object)) {

Message n = p.next;

mMessages = n;

p.recycleUnchecked();

p = n;

}

// Remove all messages after front.

while (p != null) {

Message n = p.next;

if (n != null) {

if (n.target == h && n.what == what

&& (object == null || n.obj == object)) {

Message nn = n.next;

n.recycleUnchecked();

p.next = nn;

continue;

}

}

p = n;

}

}

}

4. Message

(1)消息创建

Message.obtain()创建消息。若消息池链表sPool不为空,则从sPool中获取第一个,flags标记为UnInUse,同时从sPool中移除,sPoolSize减1;若消息池链表sPool为空,则new Message()

(2)消息释放

recycle()将消息释放,从内部实现recycleUnchecked()可知,将flags标记为InUse,其他各种状态清零,同时将Message添加到sPool,且sPoolSize加1

/**

* Return a new Message instance from the global pool. Allows us to

* avoid allocating new objects in many cases.

*/

public static Message obtain() {

synchronized (sPoolSync) {

if (sPool != null) {

Message m = sPool;

sPool = m.next;

m.next = null;

m.flags = 0; // clear in-use flag

sPoolSize--;

return m;

}

}

return new Message();

}

/**

* Return a Message instance to the global pool.

* <p>

* You MUST NOT touch the Message after calling this function because it has

* effectively been freed. It is an error to recycle a message that is currently

* enqueued or that is in the process of being delivered to a Handler.

* </p>

*/

public void recycle() {

if (isInUse()) {

if (gCheckRecycle) {

throw new IllegalStateException("This message cannot be recycled because it "

+ "is still in use.");

}

return;

}

recycleUnchecked();

}

/**

* Recycles a Message that may be in-use.

* Used internally by the MessageQueue and Looper when disposing of queued Messages.

*/

void recycleUnchecked() {

// Mark the message as in use while it remains in the recycled object pool.

// Clear out all other details.

flags = FLAG_IN_USE;

what = 0;

arg1 = 0;

arg2 = 0;

obj = null;

replyTo = null;

sendingUid = -1;

when = 0;

target = null;

callback = null;

data = null;

synchronized (sPoolSync) {

if (sPoolSize < MAX_POOL_SIZE) {

next = sPool;

sPool = this;

sPoolSize++;

}

}

}

5. HandlerThread

由于Java中的Thread是没有消息循环机制的,run()方法执行完,线程则结束。HandlerThread通过使用Looper实现了消息循环,只要不主动调用HandlerThread或Looper的quit()方法,循环就是一直走下去。

public class HandlerThread extends Thread {

int mPriority;

int mTid = -1;

Looper mLooper;

public HandlerThread(String name) {

super(name);

mPriority = Process.THREAD_PRIORITY_DEFAULT;

}

@Override

public void run() {

mTid = Process.myTid();

Looper.prepare();

synchronized (this) {

mLooper = Looper.myLooper();

notifyAll();

}

Process.setThreadPriority(mPriority);

onLooperPrepared();

Looper.loop();

mTid = -1;

}

public Looper getLooper() {

if (!isAlive()) {

return null;

}

// If the thread has been started, wait until the looper has been created.

synchronized (this) {

while (isAlive() && mLooper == null) {

try {

wait();

} catch (InterruptedException e) {

}

}

}

return mLooper;

}

public boolean quit() {

Looper looper = getLooper();

if (looper != null) {

looper.quit();

return true;

}

return false;

}

}

总结

  • 关键类:HandlerThread、Handler、Looper、MessageQueue、Messaga
  • MessageQueue数据结构,链表。

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

以上是 Android消息循环机制源码深入理解 的全部内容, 来源链接: utcz.com/z/313828.html

回到顶部