对python多线程中互斥锁Threading.Lock的简单应用详解

一、线程共享进程资源

每个线程互相独立,相互之间没有任何关系,但是在同一个进程中的资源,线程是共享的,如果不进行资源的合理分配,对数据造成破坏,使得线程运行的结果不可预期。这种现象称为“线程不安全”。

实例如下:

#-*- coding: utf-8 -*-

import threading

import time

def test_xc():

f = open("test.txt","a")

f.write("test_dxc"+'\n')

time.sleep(1)

f.close()

if __name__ == '__main__':

for i in xrange(5):

t = threading.Thread(target=test_xc)

t.start()

结果展示:

二、互斥锁同步

线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定。某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

#创建锁

mutex = threading.Lock()

#锁定

mutex.acquire([timeout])#timeout是超时时间

#释放

mutex.release()

其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。

三、使用线程锁

<pre name="code" class="python">#-*- coding: utf-8 -*-

import threading

import time

def test_xc():

f = open("test.txt","a")

f.write("test_dxc"+'\n')

time.sleep(1)

mutex.acquire()#取得锁

f.close()

mutex.release()#释放锁

if __name__ == '__main__':

mutex = threading.Lock()#创建锁

for i in xrange(5):

t = threading.Thread(target=test_xc)

t.start()

运行结果

以上这篇对python多线程中互斥锁Threading.Lock的简单应用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 对python多线程中互斥锁Threading.Lock的简单应用详解 的全部内容, 来源链接: utcz.com/z/312830.html

回到顶部