Python操作rabbitMQ的示例代码

引入

RabbitMQ 是一个由 Erlang 语言开发的 AMQP 的开源实现。

rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。

中文文档

安装

# 安装配置epel源

rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm

# 安装erlang

yum -y install erlang

# 安装RabbitMQ

yum -y install rabbitmq-server

# 启动/停止

service rabbitmq-server start/stop

rabbitMQ工作模型

简单模式

生产者

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost'))

channel = connection.channel()

channel.queue_declare(queue='hello')

channel.basic_publish(exchange='',

routing_key='hello',

body='Hello World!')

print(" [x] Sent 'Hello World!'")

connection.close()

消费者

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))

channel = connection.channel()

channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):

print(" [x] Received %r" % body)

channel.basic_consume( callback,

queue='hello',

no_ack=True)

print(' [*] Waiting for messages. To exit press CTRL+C')

channel.start_consuming()

相关参数

1,no-ack = False

如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。

  • 回调函数中的 ch.basic_ack(delivery_tag=method.delivery_tag)
  • basic_comsume中的no_ack=False

接收消息端应该这么写:

Q

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(

host='10.211.55.4'))

channel = connection.channel()

channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):

print(" [x] Received %r" % body)

import time

time.sleep(10)

print 'ok'

ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_consume(callback,

queue='hello',

no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')

channel.start_consuming()

2,durable :消息不丢失

生产者

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))

channel = connection.channel()

# make message persistent

channel.queue_declare(queue='hello', durable=True)

channel.basic_publish(exchange='',

routing_key='hello',

body='Hello World!',

properties=pika.BasicProperties(

delivery_mode=2, # make message persistent

))

print(" [x] Sent 'Hello World!'")

connection.close()

3,消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))

channel = connection.channel()

# make message persistent

channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):

print(" [x] Received %r" % body)

import time

time.sleep(10)

print 'ok'

ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)

channel.basic_consume(callback,

queue='hello',

no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')

channel.start_consuming()

exchange模型

1,发布订阅

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

exchange type = fanout

生产者

import pika

import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(

host='localhost'))

channel = connection.channel()

channel.exchange_declare(exchange='logs',

type='fanout')

message = ' '.join(sys.argv[1:]) or "info: Hello World!"

channel.basic_publish(exchange='logs',

routing_key='',

body=message)

print(" [x] Sent %r" % message)

connection.close()

消费者

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(

host='localhost'))

channel = connection.channel()

channel.exchange_declare(exchange='logs',

type='fanout')

result = channel.queue_declare(exclusive=True)

queue_name = result.method.queue

channel.queue_bind(exchange='logs',

queue=queue_name)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):

print(" [x] %r" % body)

channel.basic_consume(callback,

queue=queue_name,

no_ack=True)

channel.start_consuming()

2,关键字发送

之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

exchange type = direct

import pika

import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(

host='localhost'))

channel = connection.channel()

channel.exchange_declare(exchange='direct_logs',

type='direct')

result = channel.queue_declare(exclusive=True)

queue_name = result.method.queue

severities = sys.argv[1:]

if not severities:

sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])

sys.exit(1)

for severity in severities:

channel.queue_bind(exchange='direct_logs',

queue=queue_name,

routing_key=severity)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):

print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,

queue=queue_name,

no_ack=True)

channel.start_consuming()

3,模糊匹配

exchange type = topic

发送者路由值 队列中

old.boy.python old.* -- 不匹配

old.boy.python old.# -- 匹配

在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配 0 个 或 多个 单词
  • *  表示只能匹配 一个 单词

import pika

import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(

host='localhost'))

channel = connection.channel()

channel.exchange_declare(exchange='topic_logs',

type='topic')

result = channel.queue_declare(exclusive=True)

queue_name = result.method.queue

binding_keys = sys.argv[1:]

if not binding_keys:

sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])

sys.exit(1)

for binding_key in binding_keys:

channel.queue_bind(exchange='topic_logs',

queue=queue_name,

routing_key=binding_key)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):

print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,

queue=queue_name,

no_ack=True)

channel.start_consuming()

基于rabbitMQ的RPC

 Callback queue 回调队列

一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址 reply_to 。

Correlation id 关联标识

一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有 correlation_id 属性,这样客户端在回调队列中根据 correlation_id 字段的值就可以分辨此响应属于哪个请求。

客户端发送请求:

某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息

服务端工作流:

等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中

客户端接受处理结果:

客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用

服务者

import pika

# 建立连接,服务器地址为localhost,可指定ip地址

connection = pika.BlockingConnection(pika.ConnectionParameters(

host='localhost'))

# 建立会话

channel = connection.channel()

# 声明RPC请求队列

channel.queue_declare(queue='rpc_queue')

# 数据处理方法

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

# 对RPC请求队列中的请求进行处理

def on_request(ch, method, props, body):

n = int(body)

print(" [.] fib(%s)" % n)

# 调用数据处理方法

response = fib(n)

# 将处理结果(响应)发送到回调队列

ch.basic_publish(exchange='',

routing_key=props.reply_to,

properties=pika.BasicProperties(correlation_id = \

props.correlation_id),

body=str(response))

ch.basic_ack(delivery_tag = method.delivery_tag)

# 负载均衡,同一时刻发送给该服务器的请求不超过一个

channel.basic_qos(prefetch_count=1)

channel.basic_consume(on_request, queue='rpc_queue')

print(" [x] Awaiting RPC requests")

channel.start_consuming()

客户端

import pika

import uuid

class FibonacciRpcClient(object):

def __init__(self):

"""

客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应

"""

# 建立连接,指定服务器的ip地址

self.connection = pika.BlockingConnection(pika.ConnectionParameters(

host='localhost'))

# 建立一个会话,每个channel代表一个会话任务

self.channel = self.connection.channel()

# 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次

result = self.channel.queue_declare(exclusive=True)

# 将次队列指定为当前客户端的回调队列

self.callback_queue = result.method.queue

# 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理;

self.channel.basic_consume(self.on_response, no_ack=True,

queue=self.callback_queue)

# 对回调队列中的响应进行处理的函数

def on_response(self, ch, method, props, body):

if self.corr_id == props.correlation_id:

self.response = body

# 发出RPC请求

def call(self, n):

# 初始化 response

self.response = None

#生成correlation_id

self.corr_id = str(uuid.uuid4())

# 发送RPC请求内容到RPC请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`

self.channel.basic_publish(exchange='',

routing_key='rpc_queue',

properties=pika.BasicProperties(

reply_to = self.callback_queue,

correlation_id = self.corr_id,

),

body=str(n))

while self.response is None:

self.connection.process_data_events()

return int(self.response)

# 建立客户端

fibonacci_rpc = FibonacciRpcClient()

# 发送RPC请求

print(" [x] Requesting fib(30)")

response = fibonacci_rpc.call(30)

print(" [.] Got %r" % response)

以上是 Python操作rabbitMQ的示例代码 的全部内容, 来源链接: utcz.com/z/312743.html

回到顶部