Java 确定整数平方根是否为整数的最快方法

我正在寻找确定一个long值是否为完美平方(即其平方根是另一个整数)的最快方法:

我已经通过使用内置Math.sqrt() 函数完成了简单的方法,但是我想知道是否有一种方法可以通过将自己限制为仅整数域来更快地完成操作。

维护查询表是不切实际的(因为大约2 31.5整数的平方小于2 63)。

这是我现在要做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)

{

if (n < 0)

return false;

long tst = (long)(Math.sqrt(n) + 0.5);

return tst*tst == n;

}

回答:

我想出一种方法,至少在我的CPU(x86)和编程语言(C / C ++)上比6bits + Cackack + sqrt代码快约35%。你的结果可能会有所不同,尤其是因为我不知道Java因素将如何发挥作用。

我的方法是三方面的:

首先,过滤出明显的答案。这包括负数并查看最后4位。(我发现查看最后六个无济于事。)我还对0回答是。(在阅读下面的代码时,请注意我的输入是int64 x。)

if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )

return false;

if( x == 0 )

return true;

接下来,检查它是否是平方模255 = 3 * 5 *17。因为这是三个不同素数的乘积,所以残差mod 255中只有约1/8是平方。但是,根据我的经验,调用模运算符(%)所花费的成本超过了获得的收益,因此我使用涉及255 = 2 ^ 8-1的位技巧来计算残差。(无论好坏,我都没有使用从单词中读取单个字节的技巧,而只是按位与和移位。)

int64 y = x;

y = (y & 4294967295LL) + (y >> 32);

y = (y & 65535) + (y >> 16);

y = (y & 255) + ((y >> 8) & 255) + (y >> 16);

// At this point, y is between 0 and 511. More code can reduce it farther.

要实际检查残差是否为正方形,我在预先计算的表中查找答案。

if( bad255[y] )

return false;

// However, I just use a table of size 512

最后,尝试使用类似于Hensel引理的方法计算平方根。(我认为它不直接适用,但可以进行一些修改。)在此之前,我用二进制搜索将2的所有幂除掉:

if((x & 4294967295LL) == 0)

x >>= 32;

if((x & 65535) == 0)

x >>= 16;

if((x & 255) == 0)

x >>= 8;

if((x & 15) == 0)

x >>= 4;

if((x & 3) == 0)

x >>= 2;

此时,要使我们的数字成为正方形,必须为1模8。

if((x & 7) != 1)

return false;

Hensel引理的基本结构如下。(注意:未经测试的代码;如果无效,请尝试t = 2或8。)

int64 t = 4, r = 1;

t <<= 1; r += ((x - r * r) & t) >> 1;

t <<= 1; r += ((x - r * r) & t) >> 1;

t <<= 1; r += ((x - r * r) & t) >> 1;

// Repeat until t is 2^33 or so. Use a loop if you want.

这个想法是,在每次迭代中,你需要在x的“当前”平方根r上加一位。每个平方根都是2的幂的乘积,即t / 2。最后,r和t / 2-r将是x以t / 2为模的平方根。(请注意,如果r是x的平方根,那么-r也是如此。即使是模数也是如此,但是请注意,对某些数字取模,事物的平方根甚至可能超过2;值得注意的是,这包括2的幂。 )由于我们的实际平方根小于2 ^ 32,因此实际上我们可以仅检查r或t / 2-r是否为实平方根。在我的实际代码中,我使用以下修改后的循环:

int64 r, t, z;

r = start[(x >> 3) & 1023];

do {

z = x - r * r;

if( z == 0 )

return true;

if( z < 0 )

return false;

t = z & (-z);

r += (z & t) >> 1;

if( r > (t >> 1) )

r = t - r;

} while( t <= (1LL << 33) );

这里的加速可以通过三种方式获得:预先计算的起始值(相当于循环的约10次迭代),循环的较早退出以及跳过一些t值。在最后一部分中,我查看z = r - x * x,并将t设置为2的最大幂除以一点技巧。这使我可以跳过不会影响r值的t值。在我的情况下,预先计算的起始值选取了“最小正”平方根模8192。

即使这段代码无法为你更快地工作,我希望你喜欢其中包含的一些想法。随后是完整的,经过测试的代码,包括预先计算的表。

typedef signed long long int int64;

int start[1024] =

{1,3,1769,5,1937,1741,7,1451,479,157,9,91,945,659,1817,11,

1983,707,1321,1211,1071,13,1479,405,415,1501,1609,741,15,339,1703,203,

129,1411,873,1669,17,1715,1145,1835,351,1251,887,1573,975,19,1127,395,

1855,1981,425,453,1105,653,327,21,287,93,713,1691,1935,301,551,587,

257,1277,23,763,1903,1075,1799,1877,223,1437,1783,859,1201,621,25,779,

1727,573,471,1979,815,1293,825,363,159,1315,183,27,241,941,601,971,

385,131,919,901,273,435,647,1493,95,29,1417,805,719,1261,1177,1163,

1599,835,1367,315,1361,1933,1977,747,31,1373,1079,1637,1679,1581,1753,1355,

513,1539,1815,1531,1647,205,505,1109,33,1379,521,1627,1457,1901,1767,1547,

1471,1853,1833,1349,559,1523,967,1131,97,35,1975,795,497,1875,1191,1739,

641,1149,1385,133,529,845,1657,725,161,1309,375,37,463,1555,615,1931,

1343,445,937,1083,1617,883,185,1515,225,1443,1225,869,1423,1235,39,1973,

769,259,489,1797,1391,1485,1287,341,289,99,1271,1701,1713,915,537,1781,

1215,963,41,581,303,243,1337,1899,353,1245,329,1563,753,595,1113,1589,

897,1667,407,635,785,1971,135,43,417,1507,1929,731,207,275,1689,1397,

1087,1725,855,1851,1873,397,1607,1813,481,163,567,101,1167,45,1831,1205,

1025,1021,1303,1029,1135,1331,1017,427,545,1181,1033,933,1969,365,1255,1013,

959,317,1751,187,47,1037,455,1429,609,1571,1463,1765,1009,685,679,821,

1153,387,1897,1403,1041,691,1927,811,673,227,137,1499,49,1005,103,629,

831,1091,1449,1477,1967,1677,697,1045,737,1117,1737,667,911,1325,473,437,

1281,1795,1001,261,879,51,775,1195,801,1635,759,165,1871,1645,1049,245,

703,1597,553,955,209,1779,1849,661,865,291,841,997,1265,1965,1625,53,

1409,893,105,1925,1297,589,377,1579,929,1053,1655,1829,305,1811,1895,139,

575,189,343,709,1711,1139,1095,277,993,1699,55,1435,655,1491,1319,331,

1537,515,791,507,623,1229,1529,1963,1057,355,1545,603,1615,1171,743,523,

447,1219,1239,1723,465,499,57,107,1121,989,951,229,1521,851,167,715,

1665,1923,1687,1157,1553,1869,1415,1749,1185,1763,649,1061,561,531,409,907,

319,1469,1961,59,1455,141,1209,491,1249,419,1847,1893,399,211,985,1099,

1793,765,1513,1275,367,1587,263,1365,1313,925,247,1371,1359,109,1561,1291,

191,61,1065,1605,721,781,1735,875,1377,1827,1353,539,1777,429,1959,1483,

1921,643,617,389,1809,947,889,981,1441,483,1143,293,817,749,1383,1675,

63,1347,169,827,1199,1421,583,1259,1505,861,457,1125,143,1069,807,1867,

2047,2045,279,2043,111,307,2041,597,1569,1891,2039,1957,1103,1389,231,2037,

65,1341,727,837,977,2035,569,1643,1633,547,439,1307,2033,1709,345,1845,

1919,637,1175,379,2031,333,903,213,1697,797,1161,475,1073,2029,921,1653,

193,67,1623,1595,943,1395,1721,2027,1761,1955,1335,357,113,1747,1497,1461,

1791,771,2025,1285,145,973,249,171,1825,611,265,1189,847,1427,2023,1269,

321,1475,1577,69,1233,755,1223,1685,1889,733,1865,2021,1807,1107,1447,1077,

1663,1917,1129,1147,1775,1613,1401,555,1953,2019,631,1243,1329,787,871,885,

449,1213,681,1733,687,115,71,1301,2017,675,969,411,369,467,295,693,

1535,509,233,517,401,1843,1543,939,2015,669,1527,421,591,147,281,501,

577,195,215,699,1489,525,1081,917,1951,2013,73,1253,1551,173,857,309,

1407,899,663,1915,1519,1203,391,1323,1887,739,1673,2011,1585,493,1433,117,

705,1603,1111,965,431,1165,1863,533,1823,605,823,1179,625,813,2009,75,

1279,1789,1559,251,657,563,761,1707,1759,1949,777,347,335,1133,1511,267,

833,1085,2007,1467,1745,1805,711,149,1695,803,1719,485,1295,1453,935,459,

1151,381,1641,1413,1263,77,1913,2005,1631,541,119,1317,1841,1773,359,651,

961,323,1193,197,175,1651,441,235,1567,1885,1481,1947,881,2003,217,843,

1023,1027,745,1019,913,717,1031,1621,1503,867,1015,1115,79,1683,793,1035,

1089,1731,297,1861,2001,1011,1593,619,1439,477,585,283,1039,1363,1369,1227,

895,1661,151,645,1007,1357,121,1237,1375,1821,1911,549,1999,1043,1945,1419,

1217,957,599,571,81,371,1351,1003,1311,931,311,1381,1137,723,1575,1611,

767,253,1047,1787,1169,1997,1273,853,1247,413,1289,1883,177,403,999,1803,

1345,451,1495,1093,1839,269,199,1387,1183,1757,1207,1051,783,83,423,1995,

639,1155,1943,123,751,1459,1671,469,1119,995,393,219,1743,237,153,1909,

1473,1859,1705,1339,337,909,953,1771,1055,349,1993,613,1393,557,729,1717,

511,1533,1257,1541,1425,819,519,85,991,1693,503,1445,433,877,1305,1525,

1601,829,809,325,1583,1549,1991,1941,927,1059,1097,1819,527,1197,1881,1333,

383,125,361,891,495,179,633,299,863,285,1399,987,1487,1517,1639,1141,

1729,579,87,1989,593,1907,839,1557,799,1629,201,155,1649,1837,1063,949,

255,1283,535,773,1681,461,1785,683,735,1123,1801,677,689,1939,487,757,

1857,1987,983,443,1327,1267,313,1173,671,221,695,1509,271,1619,89,565,

127,1405,1431,1659,239,1101,1159,1067,607,1565,905,1755,1231,1299,665,373,

1985,701,1879,1221,849,627,1465,789,543,1187,1591,923,1905,979,1241,181};

bool bad255[512] =

{0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,

1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,

0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,

1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,

1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,

1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,

1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,

1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,

0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,

1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,

0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,

1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,

1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,

1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,

1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,

1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,

0,0};

inline bool square( int64 x ) {

// Quickfail

if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )

return false;

if( x == 0 )

return true;

// Check mod 255 = 3 * 5 * 17, for fun

int64 y = x;

y = (y & 4294967295LL) + (y >> 32);

y = (y & 65535) + (y >> 16);

y = (y & 255) + ((y >> 8) & 255) + (y >> 16);

if( bad255[y] )

return false;

// Divide out powers of 4 using binary search

if((x & 4294967295LL) == 0)

x >>= 32;

if((x & 65535) == 0)

x >>= 16;

if((x & 255) == 0)

x >>= 8;

if((x & 15) == 0)

x >>= 4;

if((x & 3) == 0)

x >>= 2;

if((x & 7) != 1)

return false;

// Compute sqrt using something like Hensel's lemma

int64 r, t, z;

r = start[(x >> 3) & 1023];

do {

z = x - r * r;

if( z == 0 )

return true;

if( z < 0 )

return false;

t = z & (-z);

r += (z & t) >> 1;

if( r > (t >> 1) )

r = t - r;

} while( t <= (1LL << 33) );

return false;

}

以上是 Java 确定整数平方根是否为整数的最快方法 的全部内容, 来源链接: utcz.com/qa/433044.html

回到顶部