SHA256withRSA和SHA256然后RSA之间的区别

使用以下两种方法计算签名有什么区别?

  1. 计算签名 Signature.getInstance("SHA256withRSA")
  2. 使用SHA256计算SHA256 MessageDigest.getInstance("SHA-256")并使用摘要计算摘要Signature.getInstance("RSA");以获得签名?

如果它们不同,是否有办法修改方法2,使两个方法给出相同的输出?

我尝试了以下代码:

package mysha.mysha;

import java.security.MessageDigest;

import java.security.PrivateKey;

import java.security.Security;

import java.security.Signature;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class MySHA256 {

public static void main(String[] args) throws Exception {

//compute SHA256 first

Security.addProvider(new BouncyCastleProvider());

String s = "1234";

MessageDigest messageDigest = MessageDigest.getInstance("SHA-256");

messageDigest.update(s.getBytes());

byte[] outputDigest = messageDigest.digest();

//sign SHA256 with RSA

PrivateKey privateKey = Share.loadPk8("D:/key.pk8");

Signature rsaSignature = Signature.getInstance("RSA");

rsaSignature.initSign(privateKey);

rsaSignature.update(outputDigest);

byte[] signed = rsaSignature.sign();

System.out.println(bytesToHex(signed));

//compute SHA256withRSA as a single step

Signature rsaSha256Signature = Signature.getInstance("SHA256withRSA");

rsaSha256Signature.initSign(privateKey);

rsaSha256Signature.update(s.getBytes());

byte[] signed2 = rsaSha256Signature.sign();

System.out.println(bytesToHex(signed2));

}

public static String bytesToHex(byte[] bytes) {

final char[] hexArray = "0123456789ABCDEF".toCharArray();

char[] hexChars = new char[bytes.length * 2];

for ( int j = 0; j < bytes.length; j++ ) {

int v = bytes[j] & 0xFF;

hexChars[j * 2] = hexArray[v >>> 4];

hexChars[j * 2 + 1] = hexArray[v & 0x0F];

}

return new String(hexChars);

}

}

但是,输出并不相同。

以下是带有我的测试键的示例输出:

方法1:

61427B2A2CF1902A4B15F80156AEB09D8096BA1271F89F1919C78B18D0BABA08AA043A0037934B5AE3FC0EB7702898AC5AE96517AFD93433DF540353BCCE72A470CFA4B765D5835E7EA77743F3C4A0ABB11414B0141EF7ECCD2D5285A69728D0D0709C2537D6A772418A928B0E168F81C99B538FD25BDA7496AE8E185AC46F39

方法2:

BA9039B75CA8A40DC9A7AED51E174E2B3365B2D6A1CF94DF70A00D898074A51FDD9973672DDE95CBAC39EBE4F3BA529C538ED0FF9F0A3F9A8CE203F1DFFA907DC508643906AA86DA54DFF8A90B00F5F116D13A53731384C1C5C9C4E75A3E41DAF88F74D2F1BCCF818764A4AB144A081B641C1C488AC8B194EB14BC9D1928E4EA

根据mkl的回答,我修改了代码,但仍然无法正确执行。我还想念什么吗?

package mysha.mysha;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.security.MessageDigest;

import java.security.PrivateKey;

import java.security.Security;

import java.security.Signature;

import org.bouncycastle.asn1.DEROutputStream;

import org.bouncycastle.asn1.nist.NISTObjectIdentifiers;

import org.bouncycastle.asn1.x509.AlgorithmIdentifier;

import org.bouncycastle.asn1.x509.DigestInfo;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class MySHA256 {

public static void main(String[] args) throws Exception {

//compute SHA256 first

Security.addProvider(new BouncyCastleProvider());

String s = "1234";

MessageDigest messageDigest = MessageDigest.getInstance("SHA-256");

messageDigest.update(s.getBytes());

byte[] outputDigest = messageDigest.digest();

AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256, null);

DigestInfo di = new DigestInfo(sha256Aid, outputDigest);

//sign SHA256 with RSA

PrivateKey privateKey = Share.loadPk8("D:/key.pk8");

Signature rsaSignature = Signature.getInstance("RSA");

rsaSignature.initSign(privateKey);

rsaSignature.update(di.toASN1Primitive().getEncoded());

byte[] signed = rsaSignature.sign();

System.out.println("method 1: "+bytesToHex(signed));

//compute SHA256withRSA as a single step

Signature rsaSha256Signature = Signature.getInstance("SHA256withRSA");

rsaSha256Signature.initSign(privateKey);

rsaSha256Signature.update(s.getBytes());

byte[] signed2 = rsaSha256Signature.sign();

System.out.println("method 2: "+bytesToHex(signed2));

}

public static String bytesToHex(byte[] bytes) {

final char[] hexArray = "0123456789ABCDEF".toCharArray();

char[] hexChars = new char[bytes.length * 2];

for ( int j = 0; j < bytes.length; j++ ) {

int v = bytes[j] & 0xFF;

hexChars[j * 2] = hexArray[v >>> 4];

hexChars[j * 2 + 1] = hexArray[v & 0x0F];

}

return new String(hexChars);

}

}

方法1:

675D868546777C5A9B5E74988E0CD41A46A929C1D0890B32B1FBE34F12D68F1FDB56E623294DB903F6AC60A2ADA61976B27C66056A16F5790A78168803AD2C685F9B4CF983C939305A9819CBA9D95441CD7214D40D06A98B4DDF9692A7D300DD51E808A6722A0D7C288DBD476DF4DEEBB3DAF41CFC0978F24424960F86F0284E

方法2:

BA9039B75CA8A40DC9A7AED51E174E2B3365B2D6A1CF94DF70A00D898074A51FDD9973672DDE95CBAC39EBE4F3BA529C538ED0FF9F0A3F9A8CE203F1DFFA907DC508643906AA86DA54DFF8A90B00F5F116D13A53731384C1C5C9C4E75A3E41DAF88F74D2F1BCCF818764A4AB144A081B641C1C488AC8B194EB14BC9D1928E4EA

回答:

区别

"SHA256withRSA"SHA256哈希签名和计算以及使用"RSA"(=

"NONEwithRSA")签名之间的区别最重要的是,在前一种情况下,首先将计算出的SHA-256哈希值封装在DigestInfo结构中

DigestInfo ::= SEQUENCE {

digestAlgorithm DigestAlgorithm,

digest OCTET STRING

}

在填充之前先进行加密,然后再加密;在后一种情况下,将对裸露的SHA256哈希值进行填充和加密。

如果它们不同,是否有办法修改方法2,使两个方法给出相同的输出?

首先,您必须DigestInfo在使用进行签名之前将哈希值封装在结构中"NONEwithRSA"

RFC 3447第9.2节通过在注释1中指出

1. For the six hash functions mentioned in Appendix B.1, the DER

encoding T of the DigestInfo value is equal to the following:

...

SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00

04 20 || H.

使它工作

针对以上部分,OP使用更新的代码更新了他的问题。但是,不幸的是,它对他还没有起作用。从而,

回答:

我执行了OP的代码(SignInSteps.java)。由于他没有提供私钥,因此我使用了自己的测试密钥(demo-

rsa2048.p12)。结果:

GreenhandOriginal:

1B9557B6A076226FA4C26A9370A0E9E91B627F14204D427B03294EC4BFC346FDEEFB3A483B1E5A0593F26E9DE87F9202E1064F4D75B24B8FA355B23A560AF263361BB94B2339C3A01952C447CAC862AA9DCAB64B09ABAA0AD50232CDB299D1E4B5F7138F448A87ED32BFF4B5B66F35FFA08F13FD98DFCEC7114710282E463245311DA7A56CBEA958D88137A8B507D8601464535978EFE36EE37EF721260DB7112484F244409F0BD64C823ACFB13D06ABA84A9A0C5AB207E19231D6A71CC80F07FDA2A9654F0F609C2C3396D6DFFBBB10EF4C3D4B5ADFC72EACC044E81F252B699F095CFEF8630B284B1F6BD7201367BD5FDF2BB4C20BD07B9CC20B214D86C729

4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

GreenhandUpdated:

method 1: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

method 2: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

因此,与OP的观察相反,在更新代码的情况下,签名相等。

不承担复制和粘贴错误,可能还会涉及其他差异。

回答:

我使用Java 8(1.8.0_20)添加了无限管辖权文件,并使用BouncyCastle 1.52、1.49和1.46(由于BC

API更改而对测试代码进行了少量修改)进行了测试。

OP在评论中提到:

Java是JRE 8更新66。BouncyCastle是bcprov-jdk15on-153.jar。

因此我更新了Java,仍然没有区别。

然后,我将BouncyCastle更新为1.53。实际上,突然之间结果有所不同:

GreenhandOriginal:

1B9557B6A076226FA4C26A9370A0E9E91B627F14204D427B03294EC4BFC346FDEEFB3A483B1E5A0593F26E9DE87F9202E1064F4D75B24B8FA355B23A560AF263361BB94B2339C3A01952C447CAC862AA9DCAB64B09ABAA0AD50232CDB299D1E4B5F7138F448A87ED32BFF4B5B66F35FFA08F13FD98DFCEC7114710282E463245311DA7A56CBEA958D88137A8B507D8601464535978EFE36EE37EF721260DB7112484F244409F0BD64C823ACFB13D06ABA84A9A0C5AB207E19231D6A71CC80F07FDA2A9654F0F609C2C3396D6DFFBBB10EF4C3D4B5ADFC72EACC044E81F252B699F095CFEF8630B284B1F6BD7201367BD5FDF2BB4C20BD07B9CC20B214D86C729

4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

GreenhandUpdated:

method 1: 6BAAAC1060B6D0D56AD7D45A1BEECE82391088FF47A8D8179EFBBEB0925C4AC6C9DFC56F672E99F4A6E3C106A866B70513C25AE11B267286C584A136FBC20C4D1E7B10697352DF020BA5D67029A6EF890B2674F02C496CB1F1EBB0D4DBB580EB045DBB0FA0D7D73B418FF63F345658C6C73DA742FE260C9639C94967A928F74F61DACA03310B9986C32D83CAB8C7FC13E80612CCFC0B7E3E35BEA04EAEBDAA55FB8837B4661DC71499B4A0B1D36E1D23D9927CDB55C237D5AB2E5C088F29C6FAFAD9FE64DD4851CEC113560864E9923D485D0C6E092C8EBE82D29C312E5835B38EE9BD6B8B4BCC753EF4EE4D0977B2E781B391839E3EC31C36E5B1AA0CE90227

method 2: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

有趣的是,仅更新后的代码中方法1的值有所不同。因此,在这种情况下,我研究了中介对象

[BC 1.52]

hash: 03AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4

algo: 2.16.840.1.101.3.4.2.1

info: 3031300D06096086480165030402010500042003AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4

[BC 1.53]

hash: 03AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4

algo: 2.16.840.1.101.3.4.2.1

info: 302F300B0609608648016503040201042003AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4

因此,BouncyCastle 1.53对DigestInfo对象的编码方式不同!1.52(及以下)中的编码是RFC

3447第9.2节所期望的编码。

查看ASN.1转储,您会发现BC 1.52将AlgorithmIdentifier编码为

 2  13:   SEQUENCE {

<06 09>

4 9: OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1)

: (NIST Algorithm)

<05 00>

15 0: NULL

: }

而BC 1.53创造了

 2  11:   SEQUENCE {

<06 09>

4 9: OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1)

: (NIST Algorithm)

: }

因此在1.53中,算法参数完全丢失。这建议更改线

AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256, null);

AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256, DERNull.INSTANCE);

突然之间,它也可以与BouncyCastle 1.53一起使用,方法1和方法2的值一致!;)

null实例化时AlgorithmIdentifier,请勿将其用作SHA-256参数,DERNull.INSTANCE而应使用。

我怎么

OP在评论中表示他想进一步了解

  1. 您如何检查BouncyCastle的中间对象和
  2. 您如何产生ASN.1转储。

所以…

回答:

非常简单。首先我把线分开

rsaSignature.update(di.toASN1Primitive().getEncoded());

在更新的代码中

byte[] encodedDigestInfo = di.toASN1Primitive().getEncoded();

rsaSignature.update(encodedDigestInfo);

然后添加控制台输出

System.out.println("    hash: " + bytesToHex(outputDigest));

System.out.println(" algo: " + sha256Aid.getAlgorithm());

System.out.println(" info: " + bytesToHex(encodedDigestInfo));

最后,我使用不同的BouncyCastle版本执行了代码。

回答:

彼得·古特曼(Peter

Gutmann)有一个著名的实用程序dumpasn1,它已成为许多用于创建和显示ASN.1转储的命令行和GUI工具的内核。我目前正巧使用GUIdumpASN-

ng。

在当前情况下,我将的内容保存byte[]

encodedDigestInfo到文件中(可以使用例如来完成Files.write),然后在GUIdumpASN-ng中打开这些文件。

以上是 SHA256withRSA和SHA256然后RSA之间的区别 的全部内容, 来源链接: utcz.com/qa/427041.html

回到顶部