用python pandas装箱列
我有一个带有数值的数据框列:
df['percentage'].head()46.5
44.2
100.0
42.12
我想查看该列作为箱数:
bins = [0, 1, 5, 10, 25, 50, 100]
我如何将结果作为垃圾箱value counts?
[0, 1] bin amount[1, 5] etc
[5, 10] etc
......
回答:
你可以使用pandas.cut
:
bins = [0, 1, 5, 10, 25, 50, 100]df['binned'] = pd.cut(df['percentage'], bins)
print (df)
percentage binned
0 46.50 (25, 50]
1 44.20 (25, 50]
2 100.00 (50, 100]
3 42.12 (25, 50]
bins = [0, 1, 5, 10, 25, 50, 100]
labels = [1,2,3,4,5,6]
df['binned'] = pd.cut(df['percentage'], bins=bins, labels=labels)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5
或numpy.searchsorted:
bins = [0, 1, 5, 10, 25, 50, 100]df['binned'] = np.searchsorted(bins, df['percentage'].values)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5
…然后value_countsor groupby和合计size:
s = pd.cut(df['percentage'], bins=bins).value_counts()print (s)
(25, 50] 3
(50, 100] 1
(10, 25] 0
(5, 10] 0
(1, 5] 0
(0, 1] 0
Name: percentage, dtype: int64
s = df.groupby(pd.cut(df['percentage'], bins=bins)).size()print (s)
percentage
(0, 1] 0
(1, 5] 0
(5, 10] 0
(10, 25] 0
(25, 50] 3
(50, 100] 1
dtype: int64
默认cut返回categorical
。
Series
像这样的方法Series.value_counts()将
使用所有类别,即使数据中不存在某些类别,也可以使用categorical
操作。
以上是 用python pandas装箱列 的全部内容, 来源链接: utcz.com/qa/426467.html