如何使用flatten_json递归地扁平化嵌套的JSON?
回答:
Repo使用:flatten](https://github.com/amirziai/flatten)
- 该软件包位于pypi flatten-json 0.1.7上,可以与
pip install flatten-json
- 此问题特定于软件包的以下组件:
def flatten_json(nested_json: dict, exclude: list=[''], sep: str='_') -> dict: """
Flatten a list of nested dicts.
"""
out = dict()
def flatten(x: (list, dict, str), name: str='', exclude=exclude):
if type(x) is dict:
for a in x:
if a not in exclude:
flatten(x[a], f'{name}{a}{sep}')
elif type(x) is list:
i = 0
for a in x:
flatten(a, f'{name}{i}{sep}')
i += 1
else:
out[name[:-1]] = x
flatten(nested_json)
return out
使用递归展平嵌套 dicts
- 用Python递归思考
- 在Python中展平JSON对象
嵌套如何data
?:
flatten_json
已用于解压缩最终超过100000列的文件
展平的JSON是否可以展平?
- 是的,这个问题不能解决这个问题。但是,如果您安装
flatten
软件包,则有一种unflatten
方法,但我尚未对其进行测试。
回答:
如何展平一个JSON
或dict
一个常见问题,对此有很多答案。
- 此答案集中于使用
flatten_json
递归展平嵌套dict
或JSON
回答:
- 该答案假定您已经将
JSON
或dict
加载到了某个变量(例如,文件,api等)中- 在这种情况下,我们将使用
data
- 在这种情况下,我们将使用
回答:
- 它接受一个
dict
,如功能类型提示所示。
最常见的形式data
:
- 只是一句话:
{}
flatten_json(data)
- 字典列表:
[{}, {}, {}]
[flatten_json(x) for x in data]
- 带有顶级密钥的JSON,其中值重复:
{1: {}, 2: {}, 3: {}}
[flatten_json(data[key]) for key in data.keys()]
- 其他
{'key': [{}, {}, {}]}
:[flatten_json(x) for x in data['key']]
回答:
- 我通常会扁平
data
化成pandas.DataFrame
- 载
pandas
有import pandas as pd
- 载
资料1:
{ "id": 1,
"class": "c1",
"owner": "myself",
"metadata": {
"m1": {
"value": "m1_1",
"timestamp": "d1"
},
"m2": {
"value": "m1_2",
"timestamp": "d2"
},
"m3": {
"value": "m1_3",
"timestamp": "d3"
},
"m4": {
"value": "m1_4",
"timestamp": "d4"
}
},
"a1": {
"a11": [
]
},
"m1": {},
"comm1": "COMM1",
"comm2": "COMM21529089656387",
"share": "xxx",
"share1": "yyy",
"hub1": "h1",
"hub2": "h2",
"context": [
]
}
展平1:
df = pd.DataFrame([flatten_json(data)]) id class owner metadata_m1_value metadata_m1_timestamp metadata_m2_value metadata_m2_timestamp metadata_m3_value metadata_m3_timestamp metadata_m4_value metadata_m4_timestamp comm1 comm2 share share1 hub1 hub2
1 c1 myself m1_1 d1 m1_2 d2 m1_3 d3 m1_4 d4 COMM1 COMM21529089656387 xxx yyy h1 h2
资料2:
[{ 'accuracy': 17,
'activity': [{
'activity': [{
'confidence': 100,
'type': 'STILL'
}
],
'timestampMs': '1542652'
}
],
'altitude': -10,
'latitudeE7': 3777321,
'longitudeE7': -122423125,
'timestampMs': '1542654',
'verticalAccuracy': 2
}, {
'accuracy': 17,
'activity': [{
'activity': [{
'confidence': 100,
'type': 'STILL'
}
],
'timestampMs': '1542652'
}
],
'altitude': -10,
'latitudeE7': 3777321,
'longitudeE7': -122423125,
'timestampMs': '1542654',
'verticalAccuracy': 2
}, {
'accuracy': 17,
'activity': [{
'activity': [{
'confidence': 100,
'type': 'STILL'
}
],
'timestampMs': '1542652'
}
],
'altitude': -10,
'latitudeE7': 3777321,
'longitudeE7': -122423125,
'timestampMs': '1542654',
'verticalAccuracy': 2
}
]
展平2:
df = pd.DataFrame([flatten_json(x) for x in data]) accuracy activity_0_activity_0_confidence activity_0_activity_0_type activity_0_timestampMs altitude latitudeE7 longitudeE7 timestampMs verticalAccuracy
17 100 STILL 1542652 -10 3777321 -122423125 1542654 2
17 100 STILL 1542652 -10 3777321 -122423125 1542654 2
17 100 STILL 1542652 -10 3777321 -122423125 1542654 2
资料3:
{ "1": {
"VENUE": "JOEBURG",
"COUNTRY": "HAE",
"ITW": "XAD",
"RACES": {
"1": {
"NO": 1,
"TIME": "12:35"
},
"2": {
"NO": 2,
"TIME": "13:10"
},
"3": {
"NO": 3,
"TIME": "13:40"
},
"4": {
"NO": 4,
"TIME": "14:10"
},
"5": {
"NO": 5,
"TIME": "14:55"
},
"6": {
"NO": 6,
"TIME": "15:30"
},
"7": {
"NO": 7,
"TIME": "16:05"
},
"8": {
"NO": 8,
"TIME": "16:40"
}
}
},
"2": {
"VENUE": "FOOBURG",
"COUNTRY": "ABA",
"ITW": "XAD",
"RACES": {
"1": {
"NO": 1,
"TIME": "12:35"
},
"2": {
"NO": 2,
"TIME": "13:10"
},
"3": {
"NO": 3,
"TIME": "13:40"
},
"4": {
"NO": 4,
"TIME": "14:10"
},
"5": {
"NO": 5,
"TIME": "14:55"
},
"6": {
"NO": 6,
"TIME": "15:30"
},
"7": {
"NO": 7,
"TIME": "16:05"
},
"8": {
"NO": 8,
"TIME": "16:40"
}
}
}
}
展平3:
df = pd.DataFrame([flatten_json(data[key]) for key in data.keys()]) VENUE COUNTRY ITW RACES_1_NO RACES_1_TIME RACES_2_NO RACES_2_TIME RACES_3_NO RACES_3_TIME RACES_4_NO RACES_4_TIME RACES_5_NO RACES_5_TIME RACES_6_NO RACES_6_TIME RACES_7_NO RACES_7_TIME RACES_8_NO RACES_8_TIME
JOEBURG HAE XAD 1 12:35 2 13:10 3 13:40 4 14:10 5 14:55 6 15:30 7 16:05 8 16:40
FOOBURG ABA XAD 1 12:35 2 13:10 3 13:40 4 14:10 5 14:55 6 15:30 7 16:05 8 16:40
以上是 如何使用flatten_json递归地扁平化嵌套的JSON? 的全部内容, 来源链接: utcz.com/qa/423270.html