Java中Math.pow()背后的算法是什么

我刚开始使用Java,并且作为第一个项目,我正在编写一个程序,该程序查找给定数字的根(在这种情况下为立方根)。目前,我正在尝试Newton-

Ralphson来实现这一目标。这是代码-

import java.util.Scanner;

import static java.lang.Math.abs;

public class newClass {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.println("Number whose cube root u wanna find:");

Double number = input.nextDouble();

Double epsilon = 0.0001;

Double ans = number/2.00;

while (abs((abs(number) - abs(Math.pow(ans,3))))>epsilon){

System.out.println("in loop");

ans = ans - ((Math.pow(ans,3) - number)/(3*Math.pow(ans,2)));

System.out.println(ans);

if ((number - ans)<=epsilon){

System.out.println(ans);

}

}

//System.out.println(Math.pow(number,1.0/3.0));

}

}

此操作最多只能使用11位数字,因为它太大了,IDE无法处理。但是,如果我只是使用Math.pow(number,1.0/3.0)它,它就可以处理更大的数字,并且可以立即进行计算。


那么,Math.pow()给出即时答案的算法是什么? 我了解我的方法依赖于猜测,而且我猜math.pow()可能实际上是在计算答案,但是如何?

回答:

这是一个有趣的问题。如果查看Java

Math类的源代码,您会发现它调用StrictMath.pow(double1,double2),而StrictMath的签名是public static

native double pow(double a, double b);

因此,最后,这是一个真正的本地调用,可能会因平台而异。但是,某处有一个实现,而且看起来并不容易。这是函数的描述以及函数本身的代码:

查看数学,试图理解它可能不可避免地导致更多问题。但是,通过在Java Math

Function源代码上搜索此Github

并浏览一下数学摘要,您肯定可以更好地理解本机函数。快乐探索:)

Method:  Let x =  2   * (1+f)

1. Compute and return log2(x) in two pieces:

log2(x) = w1 + w2,

where w1 has 53-24 = 29 bit trailing zeros.

2. Perform y*log2(x) = n+y' by simulating muti-precision

arithmetic, where |y'|<=0.5.

3. Return x**y = 2**n*exp(y'*log2)

      1.  (anything) ** 0  is 1

2. (anything) ** 1 is itself

3. (anything) ** NAN is NAN

4. NAN ** (anything except 0) is NAN

5. +-(|x| > 1) ** +INF is +INF

6. +-(|x| > 1) ** -INF is +0

7. +-(|x| < 1) ** +INF is +0

8. +-(|x| < 1) ** -INF is +INF

9. +-1 ** +-INF is NAN

10. +0 ** (+anything except 0, NAN) is +0

11. -0 ** (+anything except 0, NAN, odd integer) is +0

12. +0 ** (-anything except 0, NAN) is +INF

13. -0 ** (-anything except 0, NAN, odd integer) is +INF

14. -0 ** (odd integer) = -( +0 ** (odd integer) )

15. +INF ** (+anything except 0,NAN) is +INF

16. +INF ** (-anything except 0,NAN) is +0

17. -INF ** (anything) = -0 ** (-anything)

18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)

19. (-anything except 0 and inf) ** (non-integer) is NAN

       pow(x,y) returns x**y nearly rounded. In particular

pow(integer,integer)

always returns the correct integer provided it is

representable.

#ifdef __STDC__

double __ieee754_pow(double x, double y)

#else

double __ieee754_pow(x,y)

double x, y;

#endif

{

double z,ax,z_h,z_l,p_h,p_l;

double y1,t1,t2,r,s,t,u,v,w;

int i0,i1,i,j,k,yisint,n;

int hx,hy,ix,iy;

unsigned lx,ly;

i0 = ((*(int*)&one)>>29)^1; i1=1-i0;

hx = __HI(x); lx = __LO(x);

hy = __HI(y); ly = __LO(y);

ix = hx&0x7fffffff; iy = hy&0x7fffffff;

/* y==zero: x**0 = 1 */

if((iy|ly)==0) return one;

/* +-NaN return x+y */

if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||

iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))

return x+y;

/* determine if y is an odd int when x < 0

* yisint = 0 ... y is not an integer

* yisint = 1 ... y is an odd int

* yisint = 2 ... y is an even int

*/

yisint = 0;

if(hx<0) {

if(iy>=0x43400000) yisint = 2; /* even integer y */

else if(iy>=0x3ff00000) {

k = (iy>>20)-0x3ff; /* exponent */

if(k>20) {

j = ly>>(52-k);

if((j<<(52-k))==ly) yisint = 2-(j&1);

} else if(ly==0) {

j = iy>>(20-k);

if((j<<(20-k))==iy) yisint = 2-(j&1);

}

}

}

/* special value of y */

if(ly==0) {

if (iy==0x7ff00000) { /* y is +-inf */

if(((ix-0x3ff00000)|lx)==0)

return y - y; /* inf**+-1 is NaN */

else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */

return (hy>=0)? y: zero;

else /* (|x|<1)**-,+inf = inf,0 */

return (hy<0)?-y: zero;

}

if(iy==0x3ff00000) { /* y is +-1 */

if(hy<0) return one/x; else return x;

}

if(hy==0x40000000) return x*x; /* y is 2 */

if(hy==0x3fe00000) { /* y is 0.5 */

if(hx>=0) /* x >= +0 */

return sqrt(x);

}

}

ax = fabs(x);

/* special value of x */

if(lx==0) {

if(ix==0x7ff00000||ix==0||ix==0x3ff00000){

z = ax; /*x is +-0,+-inf,+-1*/

if(hy<0) z = one/z; /* z = (1/|x|) */

if(hx<0) {

if(((ix-0x3ff00000)|yisint)==0) {

z = (z-z)/(z-z); /* (-1)**non-int is NaN */

} else if(yisint==1)

z = -1.0*z; /* (x<0)**odd = -(|x|**odd) */

}

return z;

}

}

n = (hx>>31)+1;

/* (x<0)**(non-int) is NaN */

if((n|yisint)==0) return (x-x)/(x-x);

s = one; /* s (sign of result -ve**odd) = -1 else = 1 */

if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */

/* |y| is huge */

if(iy>0x41e00000) { /* if |y| > 2**31 */

if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */

if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;

if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;

}

/* over/underflow if x is not close to one */

if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;

if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;

/* now |1-x| is tiny <= 2**-20, suffice to compute

log(x) by x-x^2/2+x^3/3-x^4/4 */

t = ax-one; /* t has 20 trailing zeros */

w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));

u = ivln2_h*t; /* ivln2_h has 21 sig. bits */

v = t*ivln2_l-w*ivln2;

t1 = u+v;

__LO(t1) = 0;

t2 = v-(t1-u);

} else {

double ss,s2,s_h,s_l,t_h,t_l;

n = 0;

/* take care subnormal number */

if(ix<0x00100000)

{ax *= two53; n -= 53; ix = __HI(ax); }

n += ((ix)>>20)-0x3ff;

j = ix&0x000fffff;

/* determine interval */

ix = j|0x3ff00000; /* normalize ix */

if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */

else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */

else {k=0;n+=1;ix -= 0x00100000;}

__HI(ax) = ix;

/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */

u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */

v = one/(ax+bp[k]);

ss = u*v;

s_h = ss;

__LO(s_h) = 0;

/* t_h=ax+bp[k] High */

t_h = zero;

__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);

t_l = ax - (t_h-bp[k]);

s_l = v*((u-s_h*t_h)-s_h*t_l);

/* compute log(ax) */

s2 = ss*ss;

r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));

r += s_l*(s_h+ss);

s2 = s_h*s_h;

t_h = 3.0+s2+r;

__LO(t_h) = 0;

t_l = r-((t_h-3.0)-s2);

/* u+v = ss*(1+...) */

u = s_h*t_h;

v = s_l*t_h+t_l*ss;

/* 2/(3log2)*(ss+...) */

p_h = u+v;

__LO(p_h) = 0;

p_l = v-(p_h-u);

z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */

z_l = cp_l*p_h+p_l*cp+dp_l[k];

/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */

t = (double)n;

t1 = (((z_h+z_l)+dp_h[k])+t);

__LO(t1) = 0;

t2 = z_l-(((t1-t)-dp_h[k])-z_h);

}

/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */

y1 = y;

__LO(y1) = 0;

p_l = (y-y1)*t1+y*t2;

p_h = y1*t1;

z = p_l+p_h;

j = __HI(z);

i = __LO(z);

if (j>=0x40900000) { /* z >= 1024 */

if(((j-0x40900000)|i)!=0) /* if z > 1024 */

return s*huge*huge; /* overflow */

else {

if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */

}

} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */

if(((j-0xc090cc00)|i)!=0) /* z < -1075 */

return s*tiny*tiny; /* underflow */

else {

if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */

}

}

/*

* compute 2**(p_h+p_l)

*/

i = j&0x7fffffff;

k = (i>>20)-0x3ff;

n = 0;

if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */

n = j+(0x00100000>>(k+1));

k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */

t = zero;

__HI(t) = (n&~(0x000fffff>>k));

n = ((n&0x000fffff)|0x00100000)>>(20-k);

if(j<0) n = -n;

p_h -= t;

}

t = p_l+p_h;

__LO(t) = 0;

u = t*lg2_h;

v = (p_l-(t-p_h))*lg2+t*lg2_l;

z = u+v;

w = v-(z-u);

t = z*z;

t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));

r = (z*t1)/(t1-two)-(w+z*w);

z = one-(r-z);

j = __HI(z);

j += (n<<20);

if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */

else __HI(z) += (n<<20);

return s*z;

}

以上是 Java中Math.pow()背后的算法是什么 的全部内容, 来源链接: utcz.com/qa/419344.html

回到顶部