正确处理相机旋转的方法

让我们开始考虑两种类型的相机旋转:

摄像机绕点旋转(轨道):

def rotate_around_target(self, target, delta):

right = (self.target - self.eye).cross(self.up).normalize()

amount = (right * delta.y + self.up * delta.x)

self.target = target

self.up = self.original_up

self.eye = (

mat4.rotatez(amount.z) *

mat4.rotatey(amount.y) *

mat4.rotatex(amount.x) *

vec3(self.eye)

)

def rotate_target(self, delta):

right = (self.target - self.eye).cross(self.up).normalize()

self.target = (

mat4.translate(self.eye) *

mat4().rotate(delta.y, right) *

mat4().rotate(delta.x, self.up) *

mat4.translate(-self.eye) *

self.target

)

然后是一个更新函数,其中从眼睛/目标/上摄像机矢量中计算出投影/视图矩阵:

def update(self, aspect):

self.view = mat4.lookat(self.eye, self.target, self.up)

self.projection = mat4.perspective_fovx(

self.fov, aspect, self.near, self.far

)

当摄像机的视图方向与上轴平行(在此处为z-up)时,出现这些旋转功能的问题…在那时,摄像机的行为确实令人讨厌,因此我将遇到以下故障:

展示柜

所以我的问题是,我该如何调整以上代码,使相机完整旋转,而最终结果在某些边缘点上看起来并不奇怪(相机轴围绕:/翻转)?

我希望具有与许多DCC程序包(3dsmax,maya等)相同的行为,在这些程序包中它们进行完整的旋转而不会出现任何奇怪的行为。

对于那些想尝试一下数学的人,我决定创建一个非常简单的版本,该版本能够重现所解释的问题:

import math

from ctypes import c_void_p

import numpy as np

from OpenGL.GL import *

from OpenGL.GLU import *

from OpenGL.GLUT import *

import glm

class Camera():

def __init__(

self,

eye=None, target=None, up=None,

fov=None, near=0.1, far=100000

):

self.eye = eye or glm.vec3(0, 0, 1)

self.target = target or glm.vec3(0, 0, 0)

self.up = up or glm.vec3(0, 1, 0)

self.original_up = glm.vec3(self.up)

self.fov = fov or glm.radians(45)

self.near = near

self.far = far

def update(self, aspect):

self.view = glm.lookAt(

self.eye, self.target, self.up

)

self.projection = glm.perspective(

self.fov, aspect, self.near, self.far

)

def rotate_target(self, delta):

right = glm.normalize(glm.cross(self.target - self.eye, self.up))

M = glm.mat4(1)

M = glm.translate(M, self.eye)

M = glm.rotate(M, delta.y, right)

M = glm.rotate(M, delta.x, self.up)

M = glm.translate(M, -self.eye)

self.target = glm.vec3(M * glm.vec4(self.target, 1.0))

def rotate_around_target(self, target, delta):

right = glm.normalize(glm.cross(self.target - self.eye, self.up))

amount = (right * delta.y + self.up * delta.x)

M = glm.mat4(1)

M = glm.rotate(M, amount.z, glm.vec3(0, 0, 1))

M = glm.rotate(M, amount.y, glm.vec3(0, 1, 0))

M = glm.rotate(M, amount.x, glm.vec3(1, 0, 0))

self.eye = glm.vec3(M * glm.vec4(self.eye, 1.0))

self.target = target

self.up = self.original_up

def rotate_around_origin(self, delta):

return self.rotate_around_target(glm.vec3(0), delta)

class GlutController():

FPS = 0

ORBIT = 1

def __init__(self, camera, velocity=100, velocity_wheel=100):

self.velocity = velocity

self.velocity_wheel = velocity_wheel

self.camera = camera

def glut_mouse(self, button, state, x, y):

self.mouse_last_pos = glm.vec2(x, y)

self.mouse_down_pos = glm.vec2(x, y)

if button == GLUT_LEFT_BUTTON:

self.mode = self.FPS

elif button == GLUT_RIGHT_BUTTON:

self.mode = self.ORBIT

def glut_motion(self, x, y):

pos = glm.vec2(x, y)

move = self.mouse_last_pos - pos

self.mouse_last_pos = pos

if self.mode == self.FPS:

self.camera.rotate_target(move * 0.005)

elif self.mode == self.ORBIT:

self.camera.rotate_around_origin(move * 0.005)

class MyWindow:

def __init__(self, w, h):

self.width = w

self.height = h

glutInit()

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)

glutInitWindowSize(w, h)

glutCreateWindow('OpenGL Window')

self.startup()

glutReshapeFunc(self.reshape)

glutDisplayFunc(self.display)

glutMouseFunc(self.controller.glut_mouse)

glutMotionFunc(self.controller.glut_motion)

glutIdleFunc(self.idle_func)

def startup(self):

glEnable(GL_DEPTH_TEST)

aspect = self.width / self.height

self.camera = Camera(

eye=glm.vec3(10, 10, 10),

target=glm.vec3(0, 0, 0),

up=glm.vec3(0, 1, 0)

)

self.model = glm.mat4(1)

self.controller = GlutController(self.camera)

def run(self):

glutMainLoop()

def idle_func(self):

glutPostRedisplay()

def reshape(self, w, h):

glViewport(0, 0, w, h)

self.width = w

self.height = h

def display(self):

self.camera.update(self.width / self.height)

glClearColor(0.2, 0.3, 0.3, 1.0)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluPerspective(glm.degrees(self.camera.fov), self.width / self.height, self.camera.near, self.camera.far)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

e = self.camera.eye

t = self.camera.target

u = self.camera.up

gluLookAt(e.x, e.y, e.z, t.x, t.y, t.z, u.x, u.y, u.z)

glColor3f(1, 1, 1)

glBegin(GL_LINES)

for i in range(-5, 6):

if i == 0:

continue

glVertex3f(-5, 0, i)

glVertex3f(5, 0, i)

glVertex3f(i, 0, -5)

glVertex3f(i, 0, 5)

glEnd()

glBegin(GL_LINES)

glColor3f(1, 0, 0)

glVertex3f(-5, 0, 0)

glVertex3f(5, 0, 0)

glColor3f(0, 1, 0)

glVertex3f(0, -5, 0)

glVertex3f(0, 5, 0)

glColor3f(0, 0, 1)

glVertex3f(0, 0, -5)

glVertex3f(0, 0, 5)

glEnd()

glutSwapBuffers()

if __name__ == '__main__':

window = MyWindow(800, 600)

window.run()

为了运行它,您需要安装pyopengl和pyglm

回答:

我建议围绕视图空间中的轴进行旋转

您必须知道视图矩阵(V)。由于视图矩阵被编码在self.eyeself.target并且self.up,它必须由计算lookAt

V = glm.lookAt(self.eye, self.target, self.up)

计算pivot视图空间,旋转角度和旋转轴。在这种情况下,轴是向右旋转的方向,其中y轴必须翻转:

pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))

axis = glm.vec3(-delta.y, -delta.x, 0)

angle = glm.length(delta)

设置旋转矩阵R并计算围绕枢轴的比率矩阵RP。最后V通过旋转矩阵变换视图矩阵()。结果是新的视图矩阵NV

R  = glm.rotate( glm.mat4(1), angle, axis )

RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)

NV = RP * V

解码self.eyeself.target然后self.up从新的视图矩阵中进行解码NV

C = glm.inverse(NV)

targetDist = glm.length(self.target - self.eye)

self.eye = glm.vec3(C[3])

self.target = self.eye - glm.vec3(C[2]) * targetDist

self.up = glm.vec3(C[1])

该方法的完整编码 rotate_around_target_view

def rotate_around_target_view(self, target, delta):

V = glm.lookAt(self.eye, self.target, self.up)

pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))

axis = glm.vec3(-delta.y, -delta.x, 0)

angle = glm.length(delta)

R = glm.rotate( glm.mat4(1), angle, axis )

RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)

NV = RP * V

C = glm.inverse(NV)

targetDist = glm.length(self.target - self.eye)

self.eye = glm.vec3(C[3])

self.target = self.eye - glm.vec3(C[2]) * targetDist

self.up = glm.vec3(C[1])

最终,它可以绕世界原点和眼睛位置甚至任何其他点旋转。

def rotate_around_origin(self, delta):

return self.rotate_around_target_view(glm.vec3(0), delta)

def rotate_target(self, delta):

return self.rotate_around_target_view(self.eye, delta)


或者,可以在模型的世界空间中执行旋转。解决方案非常相似。旋转是在世界空间中完成的,因此不必将轴转换为视图空间,并且将旋转应用于视图矩阵(NV = V *

RP)之前:

def rotate_around_target_world(self, target, delta):

V = glm.lookAt(self.eye, self.target, self.up)

pivot = target

axis = glm.vec3(-delta.y, -delta.x, 0)

angle = glm.length(delta)

R = glm.rotate( glm.mat4(1), angle, axis )

RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)

NV = V * RP

C = glm.inverse(NV)

targetDist = glm.length(self.target - self.eye)

self.eye = glm.vec3(C[3])

self.target = self.eye - glm.vec3(C[2]) * targetDist

self.up = glm.vec3(C[1])

def rotate_around_origin(self, delta):

return self.rotate_around_target_world(glm.vec3(0), delta)


当然,两种解决方案都可以结合使用。通过垂直(上下)拖动,视图可以在其水平轴上旋转。通过水平拖动(左右),模型(世界)可以绕其(上)轴旋转:

def rotate_around_target(self, target, delta):

if abs(delta.x) > 0:

self.rotate_around_target_world(target, glm.vec3(delta.x, 0.0, 0.0))

if abs(delta.y) > 0:

self.rotate_around_target_view(target, glm.vec3(0.0, delta.y, 0.0))


考虑到问题的原始代码,为了实现最小程度的侵入性方法,我将提出以下建议:

  • 操作之后,视图的目标应该是target函数的输入参数rotate_around_target

  • 鼠标水平移动应使视图围绕世界的向上矢量旋转

  • 垂直鼠标移动应使视图围绕当前水平轴倾斜

我想出了以下方法:

  1. 计算当前视线(los),向上矢量(up)和水平轴(right

  2. 通过将向上矢量投影到由原始向上矢量和当前视线给定的平面上,将向上矢量垂直放置。这是通过Gram–Schmidt正交化得到的。

  3. 绕当前水平轴倾斜。这意味着losupright轴旋转。

  4. 围绕上向量旋转。losright旋转up

  5. 计算设置向上并计算眼睛和目标位置,其中目标由输入参数target设置:

    def rotate_around_target(self, target, delta):

    # get directions

    los = self.target - self.eye

    losLen = glm.length(los)

    right = glm.normalize(glm.cross(los, self.up))

    up = glm.cross(right, los)

    # upright up vector (Gram–Schmidt orthogonalization)

    fix_right = glm.normalize(glm.cross(los, self.original_up))

    UPdotX = glm.dot(fix_right, up)

    up = glm.normalize(up - UPdotX * fix_right)

    right = glm.normalize(glm.cross(los, up))

    los = glm.cross(up, right)

    # tilt around horizontal axis

    RHor = glm.rotate(glm.mat4(1), delta.y, right)

    up = glm.vec3(RHor * glm.vec4(up, 0.0))

    los = glm.vec3(RHor * glm.vec4(los, 0.0))

    # rotate around up vector

    RUp = glm.rotate(glm.mat4(1), delta.x, up)

    right = glm.vec3(RUp * glm.vec4(right, 0.0))

    los = glm.vec3(RUp * glm.vec4(los, 0.0))

    # set eye, target and up

    self.eye = target - los * losLen

    self.target = target

    self.up = up

以上是 正确处理相机旋转的方法 的全部内容, 来源链接: utcz.com/qa/418118.html

回到顶部