检查两个轮廓是否相交?

我收到了2个轮廓(cont1cont2cv2.findContours()。我怎么知道它们是否相交?我不需要坐标,我只需要一个布尔值TrueFalse

我尝试了不同的方式,并且已经尝试与

if ((cont1 & cont2).area() > 0):

…但是得到的错误是数组没有方法“ Area()”

...

cont1array = cv2.findContours(binary1, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]

cont2array = cv2.findContours(binary2, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]

...

for cont1 in cont1array:

for cont2 in cont2array:

print("cont1")

print(cont1)

print(type(cont1))

print("cont2")

print(cont2)

print(type(cont2))

> if cont1 and cont2 intersect: #i dont know how check intersect

print("yes they intersect")

else:

print("no they do not intersect")

# cont1

# [[172 302]

# [261 301]

# [262 390]

# [173 391]]

# <class 'numpy.ndarray'>

# cont2

# [[ 0 0]

# [ 0 699]

# [499 699]

# [499 0]]

# <class 'numpy.ndarray'>

回答:

一旦有了的两个轮廓cv2.findContours(),就可以使用按位AND运算来检测相交。具体来说,我们可以使用np.logical_and()。想法是为每个轮廓创建两个单独的图像,然后AND对它们使用逻辑运算。具有正值(1True)的任何点都将是交点。因此,由于您只想获取是否存在相交的布尔值,因此我们可以检查相交的图像以查看是否存在单个正值。本质上,如果整个数组都False存在,则轮廓之间就没有交集。但是,如果只有一个True,则轮廓会接触并因此相交。

def contourIntersect(original_image, contour1, contour2):

# Two separate contours trying to check intersection on

contours = [contour1, contour2]

# Create image filled with zeros the same size of original image

blank = np.zeros(original_image.shape[0:2])

# Copy each contour into its own image and fill it with '1'

image1 = cv2.drawContours(blank.copy(), contours, 0, 1)

image2 = cv2.drawContours(blank.copy(), contours, 1, 1)

# Use the logical AND operation on the two images

# Since the two images had bitwise and applied to it,

# there should be a '1' or 'True' where there was intersection

# and a '0' or 'False' where it didnt intersect

intersection = np.logical_and(image1, image2)

# Check if there was a '1' in the intersection

return intersection.any()

原始图片

在此处输入图片说明

检测到轮廓

在此处输入图片说明

现在,我们将两个检测到的轮廓传递给函数,并获得此交集数组:

[[False False False ... False False False]

[False False False ... False False False]

[False False False ... False False False]

...

[False False False ... False False False]

[False False False ... False False False]

[False False False ... False False False]]

我们检查intersection数组以查看是否True存在。我们将获得一个True1轮廓相交的地方,False0它们不相交的地方。

return intersection.any()

这样我们得到

完整代码

import cv2

import numpy as np

def contourIntersect(original_image, contour1, contour2):

# Two separate contours trying to check intersection on

contours = [contour1, contour2]

# Create image filled with zeros the same size of original image

blank = np.zeros(original_image.shape[0:2])

# Copy each contour into its own image and fill it with '1'

image1 = cv2.drawContours(blank.copy(), contours, 0, 1)

image2 = cv2.drawContours(blank.copy(), contours, 1, 1)

# Use the logical AND operation on the two images

# Since the two images had bitwise AND applied to it,

# there should be a '1' or 'True' where there was intersection

# and a '0' or 'False' where it didnt intersect

intersection = np.logical_and(image1, image2)

# Check if there was a '1' in the intersection array

return intersection.any()

original_image = cv2.imread("base.png")

image = original_image.copy()

cv2.imshow("original", image)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

cv2.imshow("gray", gray)

blurred = cv2.GaussianBlur(gray, (5,5), 0)

cv2.imshow("blur", blurred)

threshold = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]

cv2.imshow("thresh", threshold)

contours = cv2.findContours(threshold.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# Depending on OpenCV version, number of arguments return by cv.findContours

# is either 2 or 3

contours = contours[1] if len(contours) == 3 else contours[0]

contour_list = []

for c in contours:

contour_list.append(c)

cv2.drawContours(image, [c], 0, (0,255,0), 2)

print(contourIntersect(original_image, contour_list[0], contour_list[1]))

cv2.imshow("contour", image)

cv2.waitKey(0)

以上是 检查两个轮廓是否相交? 的全部内容, 来源链接: utcz.com/qa/409594.html

回到顶部