scikit-learn cross_val_predict准确性得分如何计算?
如下代码所示,使用 k 折方法的cross_val_predict
(见doc,v0.18)是否可以计算出每折的精度并最终取平均?
__
cv = KFold(len(labels), n_folds=20)clf = SVC()
ypred = cross_val_predict(clf, td, labels, cv=cv)
accuracy = accuracy_score(labels, ypred)
print accuracy
回答:
不,不是的!
根据交叉验证文档页面,cross_val_predict
不返回任何分数,而仅返回基于某种策略的标签,如下所述:
函数cross_val_predict具有与cross_val_score类似的接口,
。只能使用将所有元素完全一次分配给测试集的交叉验证策略(否则会引发异常)。
因此,通过致电,accuracy_score(labels, ypred)
与真实标签相比
即可。再次在同一文档页面中指定:
然后,这些预测可用于评估分类器:
predicted = cross_val_predict(clf, iris.data, iris.target, cv=10)
metrics.accuracy_score(iris.target, predicted)
如果您需要不同倍数的准确性得分,则应该尝试:
>>> scores = cross_val_score(clf, X, y, cv=cv)>>> scores
array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])
然后对于所有折痕的平均准确度,请使用scores.mean()
:
>>> print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))Accuracy: 0.98 (+/- 0.03)
回答:
对于计算Cohen Kappa coefficient
和混淆矩阵,我假设您的意思是真实标签与每个折痕的预测标签之间的kappa系数和混淆矩阵:
from sklearn.model_selection import KFoldfrom sklearn.svm.classes import SVC
from sklearn.metrics.classification import cohen_kappa_score
from sklearn.metrics import confusion_matrix
cv = KFold(len(labels), n_folds=20)
clf = SVC()
for train_index, test_index in cv.split(X):
clf.fit(X[train_index], labels[train_index])
ypred = clf.predict(X[test_index])
kappa_score = cohen_kappa_score(labels[test_index], ypred)
confusion_matrix = confusion_matrix(labels[test_index], ypred)
回答:
它使用KFold将数据拆分为多个k
部分,然后进行i=1..k
迭代:
- 取
i'th
部分作为测试数据和其他所有部分作为训练数据 - 使用训练数据训练模型(除以外的所有部分
i'th
) - 然后通过使用经过训练的模型,预测
i'th
零件的标签(测试数据)
在每次迭代中,i'th
将预测部分数据的标签。最后,cross_val_predict合并所有部分预测的标签,并将它们作为最终结果返回。
此代码逐步显示了此过程:
X = np.array([[0], [1], [2], [3], [4], [5]])labels = np.array(['a', 'a', 'a', 'b', 'b', 'b'])
cv = KFold(len(labels), n_folds=3)
clf = SVC()
ypred_all = np.chararray((labels.shape))
i = 1
for train_index, test_index in cv.split(X):
print("iteration", i, ":")
print("train indices:", train_index)
print("train data:", X[train_index])
print("test indices:", test_index)
print("test data:", X[test_index])
clf.fit(X[train_index], labels[train_index])
ypred = clf.predict(X[test_index])
print("predicted labels for data of indices", test_index, "are:", ypred)
ypred_all[test_index] = ypred
print("merged predicted labels:", ypred_all)
i = i+1
print("=====================================")
y_cross_val_predict = cross_val_predict(clf, X, labels, cv=cv)
print("predicted labels by cross_val_predict:", y_cross_val_predict)
结果是:
iteration 1 :train indices: [2 3 4 5]
train data: [[2] [3] [4] [5]]
test indices: [0 1]
test data: [[0] [1]]
predicted labels for data of indices [0 1] are: ['b' 'b']
merged predicted labels: ['b' 'b' '' '' '' '']
=====================================
iteration 2 :
train indices: [0 1 4 5]
train data: [[0] [1] [4] [5]]
test indices: [2 3]
test data: [[2] [3]]
predicted labels for data of indices [2 3] are: ['a' 'b']
merged predicted labels: ['b' 'b' 'a' 'b' '' '']
=====================================
iteration 3 :
train indices: [0 1 2 3]
train data: [[0] [1] [2] [3]]
test indices: [4 5]
test data: [[4] [5]]
predicted labels for data of indices [4 5] are: ['a' 'a']
merged predicted labels: ['b' 'b' 'a' 'b' 'a' 'a']
=====================================
predicted labels by cross_val_predict: ['b' 'b' 'a' 'b' 'a' 'a']
以上是 scikit-learn cross_val_predict准确性得分如何计算? 的全部内容, 来源链接: utcz.com/qa/406977.html