分解基本矩阵:验证R和T的四种可能解法

我想使用OpenCV做一些动态结构。到目前为止,我已经有了基本面和基本面。有了Essentialmatrix,我正在做SVD以获取R和T。

我的问题是我为R有2个可能的解决方案,为T有2个可能的解决方案,这导致整个姿势有4个解决方案,其中4个解决方案中只有一个是正确的。如何找到正确的解决方案?

这是我的代码:

private void calculateRT(Mat E, Mat R, Mat T){

Mat w = new Mat();

Mat u = new Mat();

Mat vt = new Mat();

Mat diag = new Mat(3,3,CvType.CV_64FC1);

double[] diagVal = {1,0,0,0,1,0,0,0,1};

diag.put(0, 0, diagVal);

Mat newE = new Mat(3,3,CvType.CV_64FC1);

Core.SVDecomp(E, w, u, vt, Core.DECOMP_SVD);

Core.gemm(u, diag, 1, vt, 1, newE);

Core.SVDecomp(newE, w, u, vt, Core.DECOMP_SVD);

publishProgress("U: " + u.dump());

publishProgress("W: " + w.dump());

publishProgress("vt:" + vt.dump());

double[] W_Values = {0,-1,0,1,0,0,0,0,1};

Mat W = new Mat(new Size(3,3), CvType.CV_64FC1);

W.put(0, 0, W_Values);

double[] Wt_values = {0,1,0-1,0,0,0,0,1};

Mat Wt = new Mat(new Size(3,3), CvType.CV_64FC1);

Wt.put(0,0,Wt_values);

Mat R1 = new Mat();

Mat R2 = new Mat();

// u * W * vt = R

Core.gemm(u, Wt, 1, vt, 1, R2);

Core.gemm(u, W, 1, vt, 1, R1);

publishProgress("R: " + R.dump());

// +- T (2 possible solutions for T)

Mat T1 = new Mat();

Mat T2 = new Mat();

// T = u.t

u.col(2).copyTo(T1);

publishProgress("T : " + T.dump());

Core.multiply(T, new Scalar(-1.0, -1.0, -1.0), T2);

// TODO Here I have to find the correct combination for R1 R2 and T1 T2

}

回答:

从其基本矩阵重建两个摄像机的相对欧氏姿势时,存在理论上的歧义。这种歧义与以下事实有关:给定图像中的2D点,经典针孔相机模型无法分辨对应的3D点是在相机前面还是在相机后面。为了消除这种歧义,您需要知道图像中的一个点对应关系:因为假定这两个2D点是位于两个摄像机前面的单个3D点的投影(因为在两个图像中都可见),这样可以选择正确的R和T。

为此,在以下博士学位论文的6.1.4(p47)中解释了一种方法:C.Ressl(PDF)编写的“三焦点张量的几何,约束和计算”

。下面概述了此方法。我将用x1和x2表示两个相应的2D点,用K1和K2表示两个相机矩阵,并用E12表示基本矩阵。

一世。计算基本矩阵的SVD E12 = U * S * V'。如果det(U) < 0设置U = -U。如果det(V) < 0设置V =

-V

ii。定义W = [0,-1,0; 1,0,0; 0,0,1]R2 = U * W * V'T2 = third column of U

iii。定义M = [ R2'*T2 ]xX1 = M * inv(K1) * x1X2 = M * R2' * inv(K2) * x2

iv。如果X1(3) * X2(3) < 0,请设置R2 = U * W' * V'并重新计算,M然后X1

v。如果已X1(3) < 0设置T2 = -T2

vi。定义P1_E = K1 * [ I | 0 ]P2_E = K2 * [ R2 | T2 ]

符号'表示[.]x步骤iii中使用的转置和符号。对应于斜对称运算符。在3x1向量上应用偏斜对称算子e = [e_1; e_2;

e_3]将产生以下结果(请参阅Wikipedia关于叉积的文章):

[e]x = [0,-e_3,e_2; e_3,0,-e_1; -e_2,e_1,0]

最后,请注意,范数T2将始终为1,因为它是正交矩阵的列之一。这意味着您将无法恢复两个摄像机之间的真实距离。为此,您需要知道场景中两个点之间的真实距离,并考虑该距离以计算摄像机之间的真实距离。

以上是 分解基本矩阵:验证R和T的四种可能解法 的全部内容, 来源链接: utcz.com/qa/405572.html

回到顶部