生成所有可能的组合
给定2个数组Array1 = {a,b,c...n}
以及Array2 = {10,20,15....x}
如何生成所有可能的组合作为字符串
其中
1 <= i <= 10, 1 <= j <= 20 , 1 <= k <= 15, .... 1 <= p <= x
如:
a1 b1 c1 .... n1 a1 b1 c1..... n2
......
......
a10 b20 c15 nx (last combination)
因此,在所有的组合总数中=元素的乘积 array2 = (10 X 20 X 15 X ..X x)
类似于笛卡尔乘积,其中第二个数组定义第一个数组中每个元素的上限。
固定数字示例
Array x = [a,b,c] Array y = [3,2,4]
因此,我们将有3 * 2 * 4 = 24个组合。结果应为:
a1 b1 c1 a1 b1 c2
a1 b1 c3
a1 b1 c4
a1 b2 c1
a1 b2 c2
a1 b2 c3
a1 b2 c4
a2 b1 c1
a2 b1 c2
a2 b1 c3
a2 b1 c4
a2 b2 c1
a2 b2 c2
a2 b2 c3
a2 b2 c4
a3 b1 c1
a3 b1 c2
a3 b1 c3
a3 b1 c4
a3 b2 c1
a3 b2 c2
a3 b2 c3
a3 b2 c4 (last)
回答:
using System;using System.Text;
public static string[] GenerateCombinations(string[] Array1, int[] Array2)
{
if(Array1 == null) throw new ArgumentNullException("Array1");
if(Array2 == null) throw new ArgumentNullException("Array2");
if(Array1.Length != Array2.Length)
throw new ArgumentException("Must be the same size as Array1.", "Array2");
if(Array1.Length == 0)
return new string[0];
int outputSize = 1;
var current = new int[Array1.Length];
for(int i = 0; i < current.Length; ++i)
{
if(Array2[i] < 1)
throw new ArgumentException("Contains invalid values.", "Array2");
if(Array1[i] == null)
throw new ArgumentException("Contains null values.", "Array1");
outputSize *= Array2[i];
current[i] = 1;
}
var result = new string[outputSize];
for(int i = 0; i < outputSize; ++i)
{
var sb = new StringBuilder();
for(int j = 0; j < current.Length; ++j)
{
sb.Append(Array1[j]);
sb.Append(current[j].ToString());
if(j != current.Length - 1)
sb.Append(' ');
}
result[i] = sb.ToString();
int incrementIndex = current.Length - 1;
while(incrementIndex >= 0 && current[incrementIndex] == Array2[incrementIndex])
{
current[incrementIndex] = 1;
--incrementIndex;
}
if(incrementIndex >= 0)
++current[incrementIndex];
}
return result;
}
以上是 生成所有可能的组合 的全部内容, 来源链接: utcz.com/qa/405177.html