n个皇后(n> 1000)的快速启发式算法
我写了两个程序:
- 将n个皇后放在棋盘中,而不会受到回溯算法的威胁。但这对于大n来说非常沉重。最后,您可以运行100个皇后区。
- 将n个皇后放在棋盘上,而不会受到爬山算法的威胁。该算法比过去的解决方案更好,但是300个皇后需要2分钟,并且这次呈指数增长!
但是我不知道要这么快!我想要更快地执行此操作的算法。
我想以更快的方式尽快解决1000个皇后的问题。
这是我的爬山代码:
// N queen - Reset Repair Hill Climbing.cpp// open-mind.ir
#include "stdafx.h"
#include <vector>
#include <iostream>
#include <fstream>
#include <time.h>
#include <iomanip>
using namespace std;
//print solution in console
void printBoardinTerminal(int *board, int len)
{
for (int i = 0; i < len; i++)
{
for (int j = 0; j < len; j++)
{
if (j == board[i])
{
cout << 1 << " ";
}
else
{
cout << 0 << " ";
}
}
cout << endl;
}
}
//print solution in File
void printBoardinFile(int *board, int len)
{
ofstream fp("output.txt", ios::out);
fp << "Answer for " << len << " queen: \n \n";
for (int i = 0; i < len; i++)
{
for (int j = 0; j < len; j++)
{
fp << "----";
}
fp << "\n|";
for (int j = 0; j < len; j++)
{
if (j == board[i])
{
fp << setw(4) << "* |" ;
}
else
{
fp << setw(4) << " |";
}
}
fp << "\n";
}
}
//The number of queens couples who are threatened themself
int evaluate(int *board, int len)
{
int score = 0;
for (int i = 0; i < len - 1; i++)
{
for (int j = i + 1; j < len; j++)
{
if (board[i] == board[j])
{
score++;
continue;
}
if (board[i] - board[j] == i - j)
{
score++;
continue;
}
if (board[i] - board[j] == j - i)
{
score++;
continue;
}
}
}
return score;
}
//generate new state from current state
int* generateBoard(int *board,int len)
{
vector <int> choice;
int temp;
int score;
int eval = evaluate(board, len);
int k;
int *boardOut;
boardOut = new int [len];
for (int i = 0; i < len; i++)
{
boardOut[i] = board[i];
}
for (int i = 0; i < len; i++)
{
choice.clear();
choice.push_back(boardOut[i]);
temp = boardOut[i];
for (int j = 0; j < len; j++)
{
boardOut[i] = j;
k = evaluate(boardOut, len);
if (k == eval)
{
choice.push_back(j);
}
if (k < eval)
{
choice.clear();
choice.push_back(j);
eval = k;
}
}
boardOut[i] = choice[rand() % choice.size()];
}
return boardOut;
}
//in this function , genarate new state by pervious function and if it has better value then replaces that by current state
bool findNextState(int *board, int len)
{
int maineval = evaluate(board, len);
int *tempBoard;
tempBoard = generateBoard(board, len);
if (evaluate(tempBoard, len) < maineval)
{
for (int p = 0; p < len; p++)
{
board[p] = tempBoard[p];
}
return true;
}
return false;
}
// make random initial state , put one queen in each row
void initialRandomBoard(int * board, int len)
{
bool access;
int col;
for (int i = 0; i < len; i++)
{
board[i] = rand() % len;
}
}
//this function include a loop that call findNextState function , and do that until reach solution
//if findNextState function return NULL then we reset current state
void SolveNQueen(int len)
{
cout << "The program is under process! wait!" << endl;
int *board;
board = new int[len];
initialRandomBoard(board, len);
while (evaluate(board, len) != 0)
{
if (!findNextState(board, len))
{
initialRandomBoard(board, len);
}
}
//
cout << endl << "Anwser for " << len << " queens: "<< endl << endl;
printBoardinTerminal(board, len);
printBoardinFile(board, len);
//
}
int main()
{
int n;
srand(time(NULL));
cout << "Enter number \'N\', \'N\' indicate numbers of queens in \"N * N\" chess board: " << endl;
cin >> n;
if (n < 4)
{
cout << "\'n\' must be uper than 3!" << endl;
exit(1);
}
SolveNQueen(n);
cout << endl << "As well , you can see result in \"output.txt\"." << endl << endl;
return 0;
}
回答:
注意:此答案假设您有兴趣寻找 有效的解决方案。如果您需要找到 解决方案,这将无济于事。
Russell和Norvig撰写的《人工智能:一种现代方法》第二版在第143页的第5章:约束满足问题中有一张表,比较了各种任务的各种约束满足问题算法。(最新版本是第三版,看起来约束约束问题现在是第6章。)
根据他们的结果,在针对 n -Queens问题测试的算法中,最小冲突局部搜索启发式算法得分最高,平均要求4K检查,而回溯和前向检查则需要>
40,000K。
该算法非常简单:
- 选择皇后的初始(随机或预选)分配
- 当有威胁的皇后时(或直到您厌倦了尝试…值得将其
for
循环以限制尝试次数):- 选择一个随机的威胁女王
- 将所选皇后移到最小化冲突的正方形
在最后一步中,我假设每个女王/王后都被限制在她的栏中,因此她只能更改该栏中的行。如果有几行将当前皇后区的冲突最小化,则可以在其中任意选择。
而已。它是完全随机的,并且效果很好。
编辑:
我在这里有一条笔记,内容是关于我不记得我实现该算法时得到的 n
值,并说我知道我获得了100以上的值。我没有找到我的旧代码,但我还是决定将某些东西放在一起。事实证明,这种方法比我记得的要有效得多。以下是10个皇后区的结果:
Starting Configuration:14 0 2 13 12 17 10 14 14 2 9 8 11 10 6 16 0 7 10 8
Solution found
Ending Configuration:
17 2 6 12 19 5 0 14 16 7 9 3 1 15 11 18 4 13 8 10
Elapsed time (sec): 0.00167
Number of moves: 227
在不尝试优化代码的情况下,以下是针对不同问题大小的大致计时:
Queens ~Time(sec)====== ==========
100 0.03
200 0.12
500 1.42
1000 9.76
2000 72.32
5000 1062.39
我只为5000个皇后运行了最后一个,但是在不到18分钟的时间内找到解决方案的速度比我预期的要快。
以上是 n个皇后(n> 1000)的快速启发式算法 的全部内容, 来源链接: utcz.com/qa/402066.html