如何使用pdfbox绘制饼图?
我必须使用pdfbox绘制一个饼图。
令数据为:
主题分数百分比累计分数
Sub-1 80 80 80
Sub-2 70 70150
Sub-3 65 65215
Sub-4 90 90305
Sub-5 55 55360
令半径和中心为100像素和(250,400)。
让我们取平行于x轴的初始线。
绘图的初始线条语句将为:
contentStream.drawLine(250,400,350,400);
我坚持:
a)在圆弧上找到与初始线相距一定角度的点的x,y坐标,以绘制半径
b)使用贝塞尔曲线在两点之间绘制圆弧。
解决问题的任何帮助将不胜感激!
回答:
根据角度在圆上找到x,y坐标是学校数学,即sin()和cos(),棘手的部分是绘制带有贝塞尔曲线的圆弧。
这是一些绘制所需饼图的代码。请注意,createSmallArc()
只能在最大90°的角度下工作。如果需要更多,则必须通过绘制多个弧线来修改代码,直到返回(0,0),或者仅绘制多个切片。
(createSmallArc()
由Hans Muller提供,许可证:Creative Commons Attribution
3.0。所做的更改:将原始的AS代码实现为Java。算法由AleksasRiškus提供)
public class PieChart{
public static void main(String[] args) throws IOException
{
PDDocument doc = new PDDocument();
PDPage page = new PDPage();
doc.addPage(page);
PDPageContentStream cs = new PDPageContentStream(doc, page);
cs.transform(Matrix.getTranslateInstance(250, 400));
cs.setNonStrokingColor(Color.yellow);
drawSlice(cs, 100, 0, 80);
cs.fill();
cs.setNonStrokingColor(Color.red);
drawSlice(cs, 100, 80, 150);
cs.fill();
cs.setNonStrokingColor(Color.green);
drawSlice(cs, 100, 150, 215);
cs.fill();
cs.setNonStrokingColor(Color.blue);
drawSlice(cs, 100, 215, 305);
cs.fill();
cs.setNonStrokingColor(Color.ORANGE);
drawSlice(cs, 100, 305, 360);
cs.fill();
cs.close();
doc.save("piechart.pdf");
doc.close();
}
private static void drawSlice(PDPageContentStream cs, float rad, float startDeg, float endDeg) throws IOException
{
cs.moveTo(0, 0);
List<Float> smallArc = createSmallArc(rad, Math.toRadians(startDeg), Math.toRadians(endDeg));
cs.lineTo(smallArc.get(0), smallArc.get(1));
cs.curveTo(smallArc.get(2), smallArc.get(3), smallArc.get(4), smallArc.get(5), smallArc.get(6), smallArc.get(7));
cs.closePath();
}
/**
* From https://hansmuller-flex.blogspot.com/2011/10/more-about-approximating-circular-arcs.html
*
* Cubic bezier approximation of a circular arc centered at the origin,
* from (radians) a1 to a2, where a2-a1 < pi/2. The arc's radius is r.
*
* Returns a list with 4 points, where x1,y1 and x4,y4 are the arc's end points
* and x2,y2 and x3,y3 are the cubic bezier's control points.
*
* This algorithm is based on the approach described in:
* Aleksas Riškus, "Approximation of a Cubic Bezier Curve by Circular Arcs and Vice Versa,"
* Information Technology and Control, 35(4), 2006 pp. 371-378.
*/
private static List<Float> createSmallArc(double r, double a1, double a2)
{
// Compute all four points for an arc that subtends the same total angle
// but is centered on the X-axis
double a = (a2 - a1) / 2;
double x4 = r * Math.cos(a);
double y4 = r * Math.sin(a);
double x1 = x4;
double y1 = -y4;
double q1 = x1*x1 + y1*y1;
double q2 = q1 + x1*x4 + y1*y4;
double k2 = 4/3d * (Math.sqrt(2 * q1 * q2) - q2) / (x1 * y4 - y1 * x4);
double x2 = x1 - k2 * y1;
double y2 = y1 + k2 * x1;
double x3 = x2;
double y3 = -y2;
// Find the arc points' actual locations by computing x1,y1 and x4,y4
// and rotating the control points by a + a1
double ar = a + a1;
double cos_ar = Math.cos(ar);
double sin_ar = Math.sin(ar);
List<Float> list = new ArrayList<Float>();
list.add((float) (r * Math.cos(a1)));
list.add((float) (r * Math.sin(a1)));
list.add((float) (x2 * cos_ar - y2 * sin_ar));
list.add((float) (x2 * sin_ar + y2 * cos_ar));
list.add((float) (x3 * cos_ar - y3 * sin_ar));
list.add((float) (x3 * sin_ar + y3 * cos_ar));
list.add((float) (r * Math.cos(a2)));
list.add((float) (r * Math.sin(a2)));
return list;
}
}
以上是 如何使用pdfbox绘制饼图? 的全部内容, 来源链接: utcz.com/qa/400817.html