【Java】列式存储格式之parquet读写
概述
Apache Parquet是Hadoop生态系统中任何项目均可使用的列式存储格式,更高压缩比以及更小IO操作。网上许多写入parquet需要在本地安装haddop环境,下面介绍一种不需要安装haddop即可写入parquet文件的方式,以及通过两种方式来读取parquet文件。下面开始入坑了...
parquet写入
1.pom依赖
<dependency><groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.parquet</groupId>
<artifactId>parquet-hadoop</artifactId>
<version>1.8.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.parquet/parquet-avro -->
<dependency>
<groupId>org.apache.parquet</groupId>
<artifactId>parquet-avro</artifactId>
<version>1.8.1</version>
</dependency>
2.定义schema(实体类)
package com.kestrel;public class User {
private String id;
private String name;
private String password;
public User() {
}
public User(String id, String name, String password) {
this.id = id;
this.name = name;
this.password = password;
}
public String getId() {
return id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getPassword() {
return password;
}
public void setPassword(String password) {
this.password = password;
}
@Override
public String toString() {
return "User{" +
"id='" + id + '\'' +
", name='" + name + '\'' +
", password='" + password + '\'' +
'}';
}
}
AvroParquetWriter 写入
List<User> users = new ArrayList<>();
User user1 = new User("1","huangchixin","123123");
User user2 = new User("2","huangchixin2","123445");
users.add(user1);
users.add(user2);
Path dataFile = new Path("./tmp/demo.snappy.parquet");
// Write as Parquet file.
try (ParquetWriter<User> writer = AvroParquetWriter.<User>builder(dataFile)
.withSchema(ReflectData.AllowNull.get().getSchema(User.class))
.withDataModel(ReflectData.get())
.withConf(new Configuration())
.withCompressionCodec(SNAPPY)
.withWriteMode(OVERWRITE)
.build()) {
for (User user : users) {
writer.write(user);
}
}
parquet读取
- AvroParquetReader读取,需要指定对象实例,或者也可自定义json 字符串
// Read from Parquet file.
try (ParquetReader<User> reader = AvroParquetReader.<User>builder(dataFile)
.withDataModel(new ReflectData(User.class.getClassLoader()))
.disableCompatibility()
.withConf(new Configuration())
.build()) {
User user;
while ((user = reader.read()) != null) {
System.out.println(user);
}
}
ParquetFileReader读取,不需要
- 列实体
package com.kestrel;
/**
* @Auther: 12640
* @Date: 2021/1/1 15:13
* @Description:
*/
public class TableHead {
/**
* 列名
*/
private String name;
/**
* 存储 列的 数据类型
*/
private String type;
/**
* 所在列
*/
private Integer index;
public String getType() {
return type;
}
public void setType(String type) {
this.type = type;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Integer getIndex() {
return index;
}
public void setIndex(Integer index) {
this.index = index;
}
}
- parquet 实体类
package com.kestrel;
import java.util.List;
/**
* @Auther: 12640
* @Date: 2021/1/1 15:14
* @Description:
*/
public class TableResult {
/**
* 解析文件的表头信息 暂时只对 arrow,csv 文件有效
*/
private List< TableHead> columns;
/**
* 数据内容
*/
private List<?> data;
public List< TableHead> getColumns() {
return columns;
}
public void setColumns(List< TableHead> columns) {
this.columns = columns;
}
public List<?> getData() {
return data;
}
public void setData(List<?> data) {
this.data = data;
}
}
- 读取parquet文件
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.collect.Lists;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.parquet.column.page.PageReadStore;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.simple.convert.GroupRecordConverter;
import org.apache.parquet.format.converter.ParquetMetadataConverter;
import org.apache.parquet.hadoop.ParquetFileReader;
import org.apache.parquet.hadoop.ParquetReader;
import org.apache.parquet.hadoop.example.GroupReadSupport;
import org.apache.parquet.hadoop.metadata.ParquetMetadata;
import org.apache.parquet.io.ColumnIOFactory;
import org.apache.parquet.io.MessageColumnIO;
import org.apache.parquet.io.RecordReader;
import org.apache.parquet.schema.GroupType;
import org.apache.parquet.schema.MessageType;
import org.apache.parquet.schema.OriginalType;
import org.apache.parquet.schema.Type;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class ReadParquet {
public static void main(String[] args) throws Exception {
TableResult tableResult = parquetReaderV2(new File("./tmp/demo.snappy.parquet"));
ObjectMapper mapper = new ObjectMapper();
String jsonString = mapper.writerWithDefaultPrettyPrinter()
.writeValueAsString(tableResult);
System.out.println(jsonString);
}
public static TableResult parquetReaderV2(File file) throws Exception {
long start = System.currentTimeMillis();
haddopEnv();
Path path = new Path(file.getAbsolutePath());
Configuration conf = new Configuration();
TableResult table = new TableResult();
//二位数据列表
List<List<Object>> dataList = Lists.newArrayList();
ParquetMetadata readFooter = ParquetFileReader.readFooter(conf, path, ParquetMetadataConverter.NO_FILTER);
MessageType schema = readFooter.getFileMetaData().getSchema();
ParquetFileReader r = new ParquetFileReader(conf, readFooter.getFileMetaData(), path, readFooter.getBlocks(), schema.getColumns());
// 1.9.0使用以下创建对象
// ParquetFileReader r = new ParquetFileReader(conf, path, readFooter);
PageReadStore pages = null;
try {
while (null != (pages = r.readNextRowGroup())) {
final long rows = pages.getRowCount();
// logger.info(file.getName()+" 行数: " + rows);
final MessageColumnIO columnIO = new ColumnIOFactory().getColumnIO(schema);
final RecordReader<Group> recordReader = columnIO.getRecordReader(pages,
new GroupRecordConverter(schema));
for (int i = 0; i <= rows; i++) {
// System.out.println(recordReader.shouldSkipCurrentRecord());
final Group g = recordReader.read();
if (i == 0) {
// 设置表头列名
table.setColumns(parquetColumn(g));
i++;
}
// 获取行数据
List<Object> row = getparquetData(table.getColumns(), g);
dataList.add(row);
// printGroup(g);
}
}
} finally {
r.close();
}
// logger.info(file.getName()+" 加载时间:"+(System.currentTimeMillis() - start));
table.setData(dataList);
return table;
}
//新版本中new ParquetReader()所有构造方法好像都弃用了,用上面的builder去构造对象
static void parquetReader(String inPath) throws Exception{
GroupReadSupport readSupport = new GroupReadSupport();
ParquetReader<Group> reader = new ParquetReader<Group>(new Path(inPath),readSupport);
Group line=null;
while((line=reader.read())!=null){
System.out.println(line.toString());
}
System.out.println("读取结束");
}
private static List<Object> getparquetData(List<TableHead> columns, Group line) {
List<Object> row = new ArrayList<>();
Object cellStr = null;
for (int i = 0; i < columns.size(); i++) {
try {
switch (columns.get(i).getType()) {
case "DOUBLE":
cellStr = line.getDouble(i, 0);
break;
case "FLOAT":
cellStr = line.getFloat(i, 0);
break;
case "BOOLEAN":
cellStr = line.getBoolean(i, 0);
break;
case "INT96":
cellStr = line.getInt96(i, 0);
break;
case "LONG":
cellStr = line.getLong(i, 0);
break;
default:
cellStr = line.getValueToString(i, 0);
}
} catch (RuntimeException e) {
} finally {
row.add(cellStr);
}
}
return row;
}
/**
* 获取arrow 文件 表头信息
*
* @param
* @return
*/
private static List<TableHead> parquetColumn(Group line) {
List<TableHead> columns = Lists.newArrayList();
TableHead dto = null;
GroupType groupType = line.getType();
int fieldCount = groupType.getFieldCount();
for (int i = 0; i < fieldCount; i++) {
dto = new TableHead();
Type type = groupType.getType(i);
String fieldName = type.getName();
OriginalType originalType = type.getOriginalType();
String typeName = null;
if (originalType != null) {
typeName = originalType.name();
} else {
typeName = type.asPrimitiveType().getPrimitiveTypeName().name();
}
dto.setIndex(i);
dto.setName(fieldName);
dto.setType(typeName);
columns.add(dto);
}
return columns;
}
public static void haddopEnv() throws IOException {
File workaround = new File(".");
System.getProperties().put("hadoop.home.dir", workaround.getAbsolutePath());
new File("./bin").mkdirs();
new File("./bin/winutils.exe").createNewFile();
}
}
微信公众号【Java搬砖小伙子】关注一波,更多资源等着你哦
您的支持是我前进路上最大的动力,谢谢!
以上是 【Java】列式存储格式之parquet读写 的全部内容, 来源链接: utcz.com/a/92725.html