有关链表的小技巧,我都给你总结好了

链表

链表是数据结构里一个很基础但是又很爱考的线性结构,链表的操作相对来说比较简单,但是非常适合考察面试者写代码的能力,以及对 corner case 的处理,还有指针的应用很容易引起 NPE (null pointer exception)。综合以上原因,链表在面试中很重要。

提到链表就不得不提数组,它和数组可以说是数据结构的基础,那么它们最主要的区别在于:

  • 数组在物理内存上必须是连续的
  • 链表在物理内存上不需要连续,通过指针连接

所以数组最好的性质就是可以随机访问 random access,有了 index,可以 O(1) 的时间访问到元素。

而链表因为不连续,所以无法 O(1) 的时间定位任意一个元素的位置,那么就只能从头开始遍历。

这就造成了它们之间增删改查上效率的不同。

除此之外,链表本身的结构与数组也是完全不同的。

LinkedList 是由 ListNode 来实现的:

class ListNode {

int value;

ListNode next;

}

结构上长这样:

有关链表的小技巧,我都给你总结好了

这是单向链表,那还有的链表是双向链表,也就是还有一个 previous pointer 指向当前 node 的前一个 node:

class ListNode {

int value;

ListNode next;

ListNode prev;

}

有关链表的小技巧,我都给你总结好了

其实链表相关的题目没有很难的,套路也就这么几个,其中最常考最基础的题目是反转链表,听说微软可以用这道题电面刷掉一半的 candidate,两种方法一遍 bug free 还是不容易的。文章之前已经写过了,点击这里直达复习。

今天我们来说链表中最主要的 2 个技巧:双指针法和 dummy node,相信看完本文后,链表相关的绝大多数题目你都能搞定啦。

双指针法

双指针法在很多数据结构和题型中都有应用,在链表中用的最多的还是快慢指针

顾名思义,两个指针一个走得快,一个走得慢,这样的好处就是以不同的速度遍历链表,方便找到目标位置。

常见的问题比如找一个链表的中点,或者判断一个链表是否有环。

例 1:找中点

有关链表的小技巧,我都给你总结好了

这题就是给一个链表,然后找到它的中点,如果是奇数个很好办,如果是偶数个,题目要求返回第二个。

比如:

1 -> 2 -> 3 -> 4 -> 5 -> NULL,需要返回 3 这个 ListNode;

1 -> 2 -> 3 -> 4 -> 5 -> 6 -> NULL,需要返回 4 这个 ListNode。

但其实吐槽一下,如果真的要设计一个这样的 API,我更倾向于选择返回偶数个中的第一个中点。

为什么呢?

算法题都是工业生产中一些问题的抽象。比如说我们找中点的目的是为了把这个链表断开,那么返回了 3,我可以断开 3 和 4;但是返回了 4,单向链表我怎么断开 4 之前的地方呢?还得再来一遍,麻烦。

Solution

方法一、

这题最直观的解法就是可以先求这个链表的长度,然后再走这个长度的一半,得到中点。

class Solution {

public ListNode middleNode(ListNode head) {

if(head == null) {

return null;

}

int len = 0;

ListNode current = head;

while(current != null) {

len++;

current = current.next;

}

len /= 2;

ListNode result = head;

while(len > 0) {

result = result.next;

len--;

}

return result;

}

}

方法二、快慢指针

我们用两个指针一起来遍历这个链表,每次快指针走 2 步,慢指针走 1 步,这样当快指针走到头的时候,慢指针应该刚好在链表的中点。

class Solution {

public ListNode middleNode(ListNode head) {

ListNode slow = head;

ListNode fast = head;

while(fast != null && fast.next != null) {

slow = slow.next;

fast = fast.next.next;

}

return slow;

}

}

这两个方法孰优孰劣呢?

网上很多说什么方法一过了两遍链表,方法二只过了一遍。

但其实,但是方法二用了两个指针来遍历,所以两个方法过的遍数都是一样的。

它们最大的区别是:

方法一是 offline algorithm,方法二是 online algorithm。

公司里的数据量是源源不断的,比如电商系统里总有客户在下单,社交软件里的好友增长是一直在涨的,这些是数据流 data stream,我们是无法计算数据流的长度的。

那么 online algorithm 能够给时刻给出当前的结果,不用说等数据全部录入完成后,实际上也录不完。。这是 online algorithm 比 offline algorithm 大大的优势所在。

更多的解释大家可以参考 stack overflow 的这个问题,链接在文末。

有关链表的小技巧,我都给你总结好了

例 2:判断单链表是否有环

有关链表的小技巧,我都给你总结好了

思路:快慢指针一起从 head 出发,每次快指针走 2 步,慢指针只走 1 步,如果存在环,那么两个指针一定会相遇。

这题是典型的龟兔赛跑,或者说在操场跑圈时,跑的快的同学总会套圈跑的慢的。

public class Solution {

public boolean hasCycle(ListNode head) {

ListNode slow = head;

ListNode fast = head;

while(fast != null && fast.next != null) {

slow = slow.next;

fast = fast.next.next;

if(slow == fast) {

return true;

}

}

return false;

}

}

这题有个升级版,就是要求返回环的起点。

例 3:返回有环链表的环的起点

有关链表的小技巧,我都给你总结好了

这题我感觉不全是个算法题了,还是个数学题哈哈。

先摆出结论:

  1. 快慢指针从链表头开始走,相遇的那点,记为 M;
  2. 再用 2 个指针,一个从头开始走,一个从 M 开始走,相遇点即为 cycle 的起点。

我们先看抽象出来的图:

假设快慢指针在 M 点第一次相遇,

这里我们设 3 个变量来表示这个链表里的几个重要长度:

  • X:从链表头到环的起点的长度;
  • Y:从环的起点到 M 点的长度;
  • Z:从 M 点到环的起点的长度。

注意:因为环是有方向的,所以 Y 并不是 Z。

那其实我们唯一知道的关系就是:快慢指针在 M 点第一次相遇。这也是我们最初假设的关系。

而快慢指针有一个永远不变的真理:快指针走的长度永远是慢指针走的长度的 2 倍。

相遇时快慢指针分别走了多少的长度呢?

  • 快指针:X+ Y + 假设走了 k 圈
  • 慢指针:X + Y

那么我们就可以用这个 2 倍的关系,列出下列等式:

2 * (X + Y) = X + Y + kL

所以 X + Y = kL

而我们注意到:Y + Z = L,那么就能得出 X = Z。

所以当两个指针,一个从头开始走,一个从 M 点开始走时,相遇那点就是环的起点,证毕。

来看下代码吧:

public class Solution {

public ListNode detectCycle(ListNode head) {

ListNode slow = head;

ListNode fast = head;

while (fast != null && fast.next != null) {

slow = slow.next;

fast = fast.next.next;

​ if (slow == fast) {

​ ListNode x = head;

​ ListNode y = slow;

​ while(x != y) {

​ x = x.next;

​ y = y.next;

​ }

​ return x;

​ }

​ }

​ return null;

}

}

这题还有个应用,就是找一个特定数组里重复的数字,这里就不展开了,大家感兴趣的去做一下吧~

有关链表的小技巧,我都给你总结好了

接下来我们聊聊 dummy node 这个技巧。

Dummy node

Dummy 的中文是“假”的意思,dummy node 大概可以翻译成虚拟节点?有更地道的说法的话还请大家在评论区告诉我呀~

一般来说,dummy node 的用法是在链表的真实 head 的前面加一个指向这个 head 的节点,目的是为了方便操作 head。

对于链表来说,head 是一个链表的灵魂,因为无论是查询还是其他的操作都需要从头开始,俗话说擒贼先擒王嘛,抓住了一个链表的头,就抓住了整个链表。

所以当需要对现有链表的头进行改动时,或者不确定头部节点是哪个,我们可以预先加一个 dummyHead,这样就可以灵活处理链表中的剩余部分,最后返回时去掉这个“假头”就好了。

很多时候 dummy node 不是必须,但是用了会很方便,减少 corner case 的讨论,所以还是非常推荐使用的。

光说不练假把式,我们直接来看题~

例 4:合并两个排好序的链表

有关链表的小技巧,我都给你总结好了

这题有很多种解法,比如最直观的就是用两个指针,然后比较大小,把小的接到最终的结果上去。

但是有点麻烦的是,最后的结果不知道到底谁是头啊,是哪个链表的头作为了最终结果的头呢?

这种情况就非常适合用 dummy node。

先用一个虚拟的头在这撑着,把整个链表构造好之后,再把这个假的剔除。

来看代码~

class Solution {

public ListNode mergeTwoLists(ListNode l1, ListNode l2) {

​ if (l1 == null) {

​ return l2;

​ }

​ if (l2 == null) {

​ return l1;

​ }

​ ListNode dummy = new ListNode(0);

​ ListNode ptr = dummy;

​ while (l1 != null && l2 != null) {

​ if (l1.val < l2.val) {

​ ptr.next = l1;

​ l1 = l1.next;

​ } else {

​ ptr.next = l2;

​ l2 = l2.next;

​ }

​ ptr = ptr.next;

​ }

​ if (l1 == null) {

​ ptr.next = l2;

​ } else {

​ ptr.next = l1;

​ }

​ return dummy.next;

}

}

这题也有升级版,就是合并 k 个排好序的链表。本质上也是一样的,只不过需要重写一下比较器就好了。

例 5:删除节点

有关链表的小技巧,我都给你总结好了

这道题的意思是删除链表中某个特定值的节点,可能有一个可能有多个,可能在头可能在尾。

如果要删除的节点在头的时候,新链表的头就不确定了,也有可能是个空的。。此时就很适合用 dummy node 来做,规避掉这些 corner case 的讨论。

那这题的思路就是:用 2 个指针

  • prev:指向当前新链表的尾巴
  • curr:指向当前正在遍历的 ListNode

如果 curr == 目标值,那就直接移到下一个;

如果 curr != 目标值,那就把 prev 指向它,接上。

这题需要注意的是,最后一定要把 prev.next 指向 null,否则如果原链表的尾巴是目标值的话,还是去不掉。

代码如下:

class Solution {

public ListNode removeElements(ListNode head, int val) {

​ ListNode dummy = new ListNode(0);

​ ListNode prev = dummy;

​ ListNode curr = head;

​ while(curr != null) {

​ if (curr.val != val) {

​ prev.next = curr;

​ prev = prev.next;

​ }

​ curr = curr.next;

​ }

​ prev.next = null;

​ return dummy.next;

}

}

好了,以上就是本文的所有内容了,如果这篇文章对你有帮助,欢迎分享给你身边的朋友,也给齐姐点个「在看」,你们的支持是我创作的最大动力!

悄悄话

最近开通了视频号,精力分散了许多,没想到录个 1 分钟的短视频也能这么多事。。

但是公众号照常分享技术干货和《齐姐聊大厂》系列,还请大家继续关注支持呀,为了保证内容的优质在线,可能准备时间有点长,多谢大家的耐心等待~~如果想我了就来视频号里找我玩~

最后,如果你对小齐的文章或者视频有什么想法或建议,欢迎留言或者私信与我多多交流,我是小齐,终生学习者,我们下期见!

以上是 有关链表的小技巧,我都给你总结好了 的全部内容, 来源链接: utcz.com/a/62746.html

回到顶部