分布式事务Seata几种常见模式分析

白菜Java自习室 涵盖核心知识

1. 分布式事务" title="分布式事务">分布式事务协议

解决分布式事务,也有相应的规范和协议。分布式事务相关的协议有2PC、3PC。

1.1. (2PC)两阶段提交协议

两阶段提交(Two-phase Commit,2PC),通过引入协调者(Coordinator)来协调参与者的行为,并最终决定这些参与者是否要真正执行事务。

1.1.1. 准备阶段

协调者询问参与者事务是否执行成功,参与者发回事务执行结果。

1.1.2. 提交阶段

如果事务在每个参与者上都执行成功,事务协调者发送通知让参与者提交事务;否则,协调者发送通知让参与者回滚事务。

需要注意的是,在准备阶段,参与者执行了事务,但是还未提交。只有在提交阶段接收到协调者发来的通知后,才进行提交或者回滚。

1.1.3. 存在的问题

  1. 同步阻塞: 所有事务参与者在等待其它参与者响应的时候都处于同步阻塞状态,无法进行其它操作。
  2. 单点问题: 协调者在 2PC 中起到非常大的作用,发生故障将会造成很大影响。特别是在阶段二发生故障,所有参与者会一直等待状态,无法完成其它操作。
  3. 数据不一致: 在阶段二,如果协调者只发送了部分 Commit 消息,此时网络发生异常,那么只有部分参与者接收到 Commit 消息,也就是说只有部分参与者提交了事务,使得系统数据不一致。
  4. 太过保守: 任意一个节点失败就会导致整个事务失败,没有完善的容错机制。

1.2. (3PC)三阶段提交协议

三阶段提交(Three-phase Commit,2PC),与两阶段提交不同的是,三阶段提交有两个改动点。

  1. 引入超时机制。同时在协调者和参与者中都引入超时机制。
  2. 在第一阶段和第二阶段中插入一个准备阶段。保证了在最后提交阶段之前各参与节点的状态是一致的。

1.2.1. CanCommit阶段

3PC的CanCommit阶段其实和2PC的准备阶段很像。协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应。

  1. 事务询问 协调者向参与者发送CanCommit请求。询问是否可以执行事务提交操作。然后开始等待参与者的响应。
  2. 响应反馈 参与者接到CanCommit请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回Yes响应,并进入预备状态。否则反馈No。

1.2.2. PreCommit阶段

协调者根据参与者的反应情况来决定是否可以继续事务的PreCommit操作。根据响应情况,有以下两种可能。 假如协调者从所有的参与者获得的反馈都是Yes响应,那么就会执行事务的预执行。

  1. 发送预提交请求 协调者向参与者发送PreCommit请求,并进入Prepared阶段。
  2. 事务预提交 参与者接收到PreCommit请求后,会执行事务操作,并将undo和redo信息记录到事务日志中。
  3. 响应反馈 如果参与者成功的执行了事务操作,则返回ACK响应,同时开始等待最终指令。

假如有任何一个参与者向协调者发送了No响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就执行事务的中断。

  1. 发送中断请求 协调者向所有参与者发送abort请求。
  2. 中断事务 参与者收到来自协调者的abort请求之后(或超时之后,仍未收到协调者的请求),执行事务的中断。

1.2.3. DoCommit阶段

该阶段进行真正的事务提交,也可以分为以下两种情况。

执行提交

  1. 发送提交请求: 协调接收到参与者发送的ACK响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送doCommit请求。
  2. 事务提交: 参与者接收到doCommit请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。
  3. 响应反馈: 事务提交完之后,向协调者发送Ack响应。
  4. 完成事务: 协调者接收到所有参与者的ack响应之后,完成事务。

中断事务

协调者没有接收到参与者发送的ACK响应(可能是接受者发送的不是ACK响应,也可能响应超时),那么就会执行中断事务。

  1. 发送中断请求: 协调者向所有参与者发送abort请求
  2. 事务回滚: 参与者接收到abort请求之后,利用其在阶段二记录的undo信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。
  3. 反馈结果: 参与者完成事务回滚之后,向协调者发送ACK消息
  4. 中断事务: 协调者接收到参与者反馈的ACK消息之后,执行事务的中断。

2. AT 模式

AT 模式是一种无侵入的分布式事务解决方案。

阿里Seata框架,实现了该模式。

在 AT 模式下,用户只需关注自己的“业务 SQL”,用户的 “业务 SQL” 作为一阶段,Seata 框架会自动生成事务的二阶段提交和回滚操作。

AT 模式如何做到对业务的无侵入:

2.1. 一阶段

在一阶段,Seata 会拦截“业务 SQL”,首先解析 SQL 语义,找到“业务 SQL”要更新的业务数据,在业务数据被更新前,将其保存成“before image”,然后执行“业务 SQL”更新业务数据,在业务数据更新之后,再将其保存成“after image”,最后生成行锁。以上操作全部在一个数据库事务内完成,这样保证了一阶段操作的原子性。

2.2. 二阶段提交

二阶段如果是提交的话,因为“业务 SQL”在一阶段已经提交至数据库, 所以 Seata 框架只需将一阶段保存的快照数据和行锁删掉,完成数据清理即可。

2.3. 二阶段回滚

二阶段如果是回滚的话,Seata 就需要回滚一阶段已经执行的“业务 SQL”,还原业务数据。回滚方式便是用“before image”还原业务数据;但在还原前要首先要校验脏写,对比“数据库当前业务数据”和 “after image”,如果两份数据完全一致就说明没有脏写,可以还原业务数据,如果不一致就说明有脏写,出现脏写就需要转人工处理。

AT 模式的一阶段、二阶段提交和回滚均由 Seata 框架自动生成,用户只需编写“业务 SQL”,便能轻松接入分布式事务,AT 模式是一种对业务无任何侵入的分布式事务解决方案。

3. TCC 模式

TCC 模式需要用户根据自己的业务场景实现 Try、Confirm 和 Cancel 三个操作;事务发起方在一阶段执行 Try 方式,在二阶段提交执行 Confirm 方法,二阶段回滚执行 Cancel 方法。

TCC 三个方法描述:

Try:资源的检测和预留;
Confirm:执行的业务操作提交;要求 Try 成功 Confirm 一定要能成功;
Cancel:预留资源释放;

3.1. 业务模型

用户接入 TCC ,最重要的是考虑如何将自己的业务模型拆成两阶段来实现。

以“扣钱”场景为例,在接入 TCC 前,对 A 账户的扣钱,只需一条更新账户余额的 SQL 便能完成;但是在接入 TCC 之后,用户就需要考虑如何将原来一步就能完成的扣钱操作,拆成两阶段,实现成三个方法,并且保证一阶段 Try 成功的话 二阶段 Confirm 一定能成功。

如上图所示,Try 方法作为一阶段准备方法,需要做资源的检查和预留。在扣钱场景下,Try 要做的事情是就是检查账户余额是否充足,预留转账资金,预留的方式就是冻结 A 账户的 转账资金。Try 方法执行之后,账号 A 余额虽然还是 100,但是其中 30 元已经被冻结了,不能被其他事务使用。

二阶段 Confirm 方法执行真正的扣钱操作。Confirm 会使用 Try 阶段冻结的资金,执行账号扣款。Confirm 方法执行之后,账号 A 在一阶段中冻结的 30 元已经被扣除,账号 A 余额变成 70 元 。

如果二阶段是回滚的话,就需要在 Cancel 方法内释放一阶段 Try 冻结的 30 元,使账号 A 的回到初始状态,100 元全部可用。

用户接入 TCC 模式,最重要的事情就是考虑如何将业务模型拆成 2 阶段,实现成 TCC 的 3 个方法,并且保证 Try 成功 Confirm 一定能成功。相对于 AT 模式,TCC 模式对业务代码有一定的侵入性,但是 TCC 模式无 AT 模式的全局行锁,TCC 性能会比 AT 模式高很多。

3.2. 允许空回滚

Cancel 接口设计时需要允许空回滚。在 Try 接口因为丢包时没有收到,事务管理器会触发回滚,这时会触发 Cancel 接口,这时 Cancel 执行时发现没有对应的事务 xid 或主键时,需要返回回滚成功。让事务服务管理器认为已回滚,否则会不断重试,而 Cancel 又没有对应的业务数据可以进行回滚。

3.3. 防悬挂控制

悬挂的意思是:Cancel 比 Try 接口先执行,出现的原因是 Try 由于网络拥堵而超时,事务管理器生成回滚,触发 Cancel 接口,而最终又收到了 Try 接口调用,但是 Cancel 比 Try 先到。按照前面允许空回滚的逻辑,回滚会返回成功,事务管理器认为事务已回滚成功,则此时的 Try 接口不应该执行,否则会产生数据不一致,所以我们在 Cancel 空回滚返回成功之前先记录该条事务 xid 或业务主键,标识这条记录已经回滚过,Try 接口先检查这条事务xid或业务主键如果已经标记为回滚成功过,则不执行 Try 的业务操作。

3.4. 幂等控制

幂等性的意思是:对同一个系统,使用同样的条件,一次请求和重复的多次请求对系统资源的影响是一致的。因为网络抖动或拥堵可能会超时,事务管理器会对资源进行重试操作,所以很可能一个业务操作会被重复调用,为了不因为重复调用而多次占用资源,需要对服务设计时进行幂等控制,通常我们可以用事务 xid 或业务主键判重来控制。

4. Saga 模式

Saga 理论出自 Hector & Kenneth 1987发表的论文 Sagas。

saga模式的实现,是长事务解决方案。

Saga 是一种补偿协议,在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。

Saga 正向服务与补偿服务也需要业务开发者实现。因此是业务入侵的。

Saga 模式下分布式事务通常是由事件驱动的,各个参与者之间是异步执行的,Saga 模式是一种长事务解决方案。

4.1. 使用场景

Saga 模式适用于业务流程长且需要保证事务最终一致性的业务系统,Saga 模式一阶段就会提交本地事务,无锁、长流程情况下可以保证性能。

事务参与者可能是其它公司的服务或者是遗留系统的服务,无法进行改造和提供 TCC 要求的接口,可以使用 Saga 模式。

优势:

  1. 一阶段提交本地数据库事务,无锁,高性能;
  2. 参与者可以采用事务驱动异步执行,高吞吐;
  3. 补偿服务即正向服务的“反向”,易于理解,易于实现;

缺点:Saga 模式由于一阶段已经提交本地数据库事务,且没有进行“预留”动作,所以不能保证隔离性。后续会讲到对于缺乏隔离性的应对措施。

与TCC实践经验相同的是,Saga 模式中,每个事务参与者的冲正、逆向操作,需要支持:

4.2. 允许空补偿

允许空补偿:原服务未执行,补偿服务执行了;

4.3. 防悬挂控制

防悬挂控制:补偿服务比原服务先执行,空补偿后要拒绝正向操作;

4.4. 幂等控制

幂等控制:原服务与补偿服务保证幂等性;

4.5. 自定义事务恢复策略

自定义事务恢复策略:

前面讲到 Saga 模式不保证事务的隔离性,在极端情况下可能出现脏写。比如在分布式事务未提交的情况下,前一个服务的数据被修改了,而后面的服务发生了异常需要进行回滚,可能由于前面服务的数据被修改后无法进行补偿操作。这时的一种处理办法可以是“重试”继续往前完成这个分布式事务。由于整个业务流程是由状态机编排的,即使是事后恢复也可以继续往前重试。所以用户可以根据业务特点配置该流程的事务处理策略是优先“回滚”还是“重试”,当事务超时的时候,Server 端会根据这个策略不断进行重试。

由于 Saga 不保证隔离性,所以我们在业务设计的时候需要做到“宁可长款,不可短款”的原则,长款是指在出现差错的时候站在我方的角度钱多了的情况,钱少了则是短款,因为如果长款可以给客户退款,而短款则可能钱追不回来了,也就是说在业务设计的时候,一定是先扣客户帐再入帐,如果因为隔离性问题造成覆盖更新,也不会出现钱少了的情况。

5. XA 模式

XA是X/Open DTP组织(X/Open DTP group)定义的两阶段提交协议,XA被许多数据库(如Oracle、DB2、SQL Server、MySQL)和中间件等工具(如CICS 和 Tuxedo)本地支持 。

X/Open DTP模型(1994)包括应用程序(AP)、事务管理器(TM)、资源管理器(RM)。

XA接口函数由数据库厂商提供。XA规范的基础是两阶段提交协议2PC。

JTA(Java Transaction API) 是Java实现的XA规范的增强版 接口。

在XA模式下,需要有一个[全局]协调器,每一个数据库事务完成后,进行第一阶段预提交,并通知协调器,把结果给协调器。协调器等所有分支事务操作完成、都预提交后,进行第二步;第二步:协调器通知每个数据库进行逐个commit/rollback。

其中,这个全局协调器就是XA模型中的TM角色,每个分支事务各自的数据库就是RM。

XA模式下的 开源框架有atomikos,其开发公司也有商业版本。

XA模式缺点:事务粒度大。高并发下,系统可用性低。因此很少使用。

6.(AT、TCC、Saga、XA)模式对比

四种分布式事务模式,分别在不同的时间被提出,每种模式都有它的适用场景:

  • AT 模式是无侵入的分布式事务解决方案,适用于不希望对业务进行改造的场景,几乎0学习成本。

  • TCC 模式是高性能分布式事务解决方案,适用于核心系统等对性能有很高要求的场景。

  • Saga 模式是长事务解决方案,适用于业务流程长且需要保证事务最终一致性的业务系统,Saga 模式一阶段就会提交本地事务,无锁,长流程情况下可以保证性能,多用于渠道层、集成层业务系统。事务参与者可能是其它公司的服务或者是遗留系统的服务,无法进行改造和提供 TCC 要求的接口,也可以使用 Saga 模式。

  • XA模式是分布式强一致性的解决方案,但性能低而使用较少。

以上是 分布式事务Seata几种常见模式分析 的全部内容, 来源链接: utcz.com/a/31823.html

回到顶部