ConcurrentHashMap源码剖析

1. ConcurrentHashMap源码分析(JDK1.7

1.1 Unsafe介绍

1.1.1 Unsafe简介

Unsafe类相当于是一个java语言中的后门类,提供了硬件级别的原子操作,所以在一些并发编程中被大量使用。jdk已经作出说明,该类对程序员而言不是一个安全操作,在后续的jdk升级过程中,可能会禁用该类。所以这个类的使用是一把双刃剑,实际项目中谨慎使用,以免造成jdk升级不兼容问题

1.1.2 Unsafe Api

这里并不系统讲解Unsafe的所有功能,只介绍和接下来内容相关的操作

arrayBaseOffset:获取数组的基础偏移量

arrayIndexScale:获取数组中元素的偏移间隔,要获取对应所以的元素,将索引号和该值相乘,获得数组中指定角标元素的偏移量

getObjectVolatile:获取对象上的属性值或者数组中的元素

getObject:获取对象上的属性值或者数组中的元素,已过时

putOrderedObject:设置对象的属性值或者数组中某个角标的元素,更高效

putObjectVolatile:设置对象的属性值或者数组中某个角标的元素

putObject:设置对象的属性值或者数组中某个角标的元素,已过时

1.1.3 代码演示

public class Test02 {

public static void main(String[] args) throws Exception {

Integer[] arr = {2,5,1,8,10};

//获取Unsafe对象

Unsafe unsafe = getUnsafe();

//获取Integer[]的基础偏移量

int baseOffset = unsafe.arrayBaseOffset(Integer[].class);

//获取Integer[]中元素的偏移间隔

int indexScale = unsafe.arrayIndexScale(Integer[].class);

//获取数组中索引为2的元素对象

Object o = unsafe.getObjectVolatile(arr, (2 * indexScale) + baseOffset);

System.out.println(o); //1

//设置数组中索引为2的元素值为100

unsafe.putOrderedObject(arr,(2 * indexScale) + baseOffset,100);

System.out.println(Arrays.toString(arr));//[2, 5, 100, 8, 10]

}

//反射获取Unsafe对象

public static Unsafe getUnsafe() throws Exception {

Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");

theUnsafe.setAccessible(true);

return (Unsafe) theUnsafe.get(null);

}

}

示意图

ConcurrentHashMap源码剖析

1.2 jdk1.7容器初始化

1.2.1 源码解析

无参构造

//空参构造

public ConcurrentHashMap() {

//调用本类的带参构造

//DEFAULT_INITIAL_CAPACITY = 16

//DEFAULT_LOAD_FACTOR = 0.75f

//int DEFAULT_CONCURRENCY_LEVEL = 16

this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);

}

三个参数的构造:一些非核心逻辑的代码已经省略

//initialCapacity 定义ConcurrentHashMap存放元素的容量

//concurrencyLevel 定义ConcurrentHashMap中Segment[]的大小

public ConcurrentHashMap(int initialCapacity,

float loadFactor, int concurrencyLevel) {

int sshift = 0;

int ssize = 1;

//计算Segment[]的大小,保证是2的幂次方数

while (ssize < concurrencyLevel) {

++sshift;

ssize <<= 1;

}

//这两个值用于后面计算Segment[]的角标

this.segmentShift = 32 - sshift;

this.segmentMask = ssize - 1;

//计算每个Segment中存储元素的个数

int c = initialCapacity / ssize;

if (c * ssize < initialCapacity)

++c;

//最小Segment中存储元素的个数为2

int cap = MIN_SEGMENT_TABLE_CAPACITY;

////矫正每个Segment中存储元素的个数,保证是2的幂次方,最小为2

while (cap < c)

cap <<= 1;

//创建一个Segment对象,作为其他Segment对象的模板

Segment<K,V> s0 =

new Segment<K,V>(loadFactor, (int)(cap * loadFactor),

(HashEntry<K,V>[])new HashEntry[cap]);

Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];

//利用Unsafe类,将创建的Segment对象存入0角标位置

UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]

this.segments = ss;

}

综上:ConcurrentHashMap中保存了一个默认长度为16的Segment[],每个Segment元素中保存了一个默认长度为2的HashEntry[],添加的元素是存入对应的Segment中的HashEntry[]中。所以ConcurrentHashMap中默认元素的长度是32个,而不是16个

示意图:

ConcurrentHashMap源码剖析

1.2.2 Segment是什么?

static final class Segment<K,V> extends ReentrantLock implements Serializable {

...

}

Segment是继承自ReentrantLock的,它可以实现同步操作,从而保证多线程下的安全。因为每个Segment之间的锁互不影响,所以也将ConcurrentHashMap中的这种锁机制称之为分段锁,这比HashTable的线程安全操作高效的多

1.2.3 HashEntry是什么?

//ConcurrentHashMap中真正存储数据的对象

static final class HashEntry<K,V> {

final int hash; //通过运算,得到的键的hash值

final K key; // 存入的键

volatile V value; //存入的值

volatile HashEntry<K,V> next; //记录下一个元素,形成单向链表

HashEntry(int hash, K key, V value, HashEntry<K,V> next) {

this.hash = hash;

this.key = key;

this.value = value;

this.next = next;

}

}

1.3 jdk1.7添加操作

1.3.1 源码分析

ConcurrentHashMap的put方法

public V put(K key, V value) {

Segment<K,V> s;

if (value == null)

throw new NullPointerException();

//基于key,计算hash值

int hash = hash(key);

//因为一个键要计算两个数组的索引,为了避免冲突,这里取高位计算Segment[]的索引

int j = (hash >>> segmentShift) & segmentMask;

//判断该索引位的Segment对象是否创建,没有就创建

if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck

(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment

s = ensureSegment(j);

//调用Segmetn的put方法实现元素添加

return s.put(key, hash, value, false);

}

ConcurrentHashMap的ensureSegment方法

//创建对应索引位的Segment对象,并返回

private Segment<K,V> ensureSegment(int k) {

final Segment<K,V>[] ss = this.segments;

long u = (k << SSHIFT) + SBASE; // 需要创建的Segment对象的下标索引

Segment<K,V> seg;

//获取,如果为null,即创建

if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {

//以0角标位的Segment为模板

Segment<K,V> proto = ss[0]; // use segment 0 as prototype

int cap = proto.table.length;

float lf = proto.loadFactor;

int threshold = (int)(cap * lf);

HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];

//获取,如果为null,即创建

if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))

== null) { // 二次检查

//创建

Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);

//自旋方式,将创建的Segment对象放到Segment[]中,确保线程安全

while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))

== null) {

if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))

break;

}

}

}

//返回

return seg;

}

Segment的put方法

final V put(K key, int hash, V value, boolean onlyIfAbsent) {

//尝试获取锁,获取成功,node为null,代码向下执行

//如果有其他线程占据锁对象,那么去做别的事情,而不是一直等待,提升效率

//scanAndLockForPut 稍后分析

HashEntry<K,V> node = tryLock() ? null :

scanAndLockForPut(key, hash, value);

V oldValue;

try {

HashEntry<K,V>[] tab = table;

//取hash的低位,计算HashEntry[]的索引

int index = (tab.length - 1) & hash;

//获取索引位的元素对象

HashEntry<K,V> first = entryAt(tab, index);

for (HashEntry<K,V> e = first;;) {

//获取的元素对象不为空

if (e != null) {

K k;

//如果是重复元素,覆盖原值

if ((k = e.key) == key ||

(e.hash == hash && key.equals(k))) {

oldValue = e.value;

if (!onlyIfAbsent) {

e.value = value;

++modCount;

}

break;

}

//如果不是重复元素,获取链表的下一个元素,继续循环遍历链表

e = e.next;

}

else { //如果获取到的元素为空

//当前添加的键值对的HashEntry对象已经创建

if (node != null)

node.setNext(first); //头插法关联即可

else

//创建当前添加的键值对的HashEntry对象

node = new HashEntry<K,V>(hash, key, value, first);

//添加的元素数量递增

int c = count + 1;

//判断是否需要扩容

if (c > threshold && tab.length < MAXIMUM_CAPACITY)

//需要扩容

rehash(node);

else

//不需要扩容

//将当前添加的元素对象,存入数组角标位,完成头插法添加元素

setEntryAt(tab, index, node);

++modCount;

count = c;

oldValue = null;

break;

}

}

} finally {

//释放锁

unlock();

}

return oldValue;

}

Segment的scanAndLockForPut方法

该方法在线程没有获取到锁的情况下,去完成HashEntry对象的创建,提升效率

但是这个操作个人感觉有点累赘了

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {

//获取头部元素

HashEntry<K,V> first = entryForHash(this, hash);

HashEntry<K,V> e = first;

HashEntry<K,V> node = null;

int retries = -1; // negative while locating node

while (!tryLock()) {

//获取锁失败

HashEntry<K,V> f; // to recheck first below

if (retries < 0) {

//没有下一个节点,并且也不是重复元素,创建HashEntry对象,不再遍历

if (e == null) {

if (node == null) // speculatively create node

node = new HashEntry<K,V>(hash, key, value, null);

retries = 0;

}

else if (key.equals(e.key))

//重复元素,不创建HashEntry对象,不再遍历

retries = 0;

else

//继续遍历下一个节点

e = e.next;

}

else if (++retries > MAX_SCAN_RETRIES) {

//如果尝试获取锁的次数过多,直接阻塞

//MAX_SCAN_RETRIES会根据可用cpu核数来确定

lock();

break;

}

else if ((retries & 1) == 0 &&

(f = entryForHash(this, hash)) != first) {

//如果期间有别的线程获取锁,重新遍历

e = first = f; // re-traverse if entry changed

retries = -1;

}

}

return node;

}

1.3.2 模拟多线程的代码流程

这里“通话”和“重地”的哈希值是一样的,那么他们添加时,会存入同一个Segment对象,必然会存在锁竞争

public static void main(String[] args) throws Exception {

final ConcurrentHashMap chm = new ConcurrentHashMap();

new Thread(){

@Override

public void run() {

chm.put("通话","11");

System.out.println("-----------");

}

}.start();

//让第一个线程先启动,进入put方法

Thread.sleep(1000);

new Thread(){

@Override

public void run() {

chm.put("重地","22");

System.out.println("===========");

}

}.start();

}

断点设置

ConcurrentHashMap源码剖析

ConcurrentHashMap源码剖析

运行结果

会发现两个线程,分别停在不同的断点位置,这就是多线程锁互斥产生的结果

然后就可以分别让不同的线程向下执行,查看代码走向了。

ConcurrentHashMap源码剖析

1.4 jdk1.7扩容安全

源码分析

private void rehash(HashEntry<K,V> node) {

HashEntry<K,V>[] oldTable = table;

int oldCapacity = oldTable.length;

//两倍容量

int newCapacity = oldCapacity << 1;

threshold = (int)(newCapacity * loadFactor);

//基于新容量,创建HashEntry数组

HashEntry<K,V>[] newTable =

(HashEntry<K,V>[]) new HashEntry[newCapacity];

int sizeMask = newCapacity - 1;

//实现数据迁移

for (int i = 0; i < oldCapacity ; i++) {

HashEntry<K,V> e = oldTable[i];

if (e != null) {

HashEntry<K,V> next = e.next;

int idx = e.hash & sizeMask;

if (next == null) // Single node on list

//原位置只有一个元素,直接放到新数组即可

newTable[idx] = e;

else { // Reuse consecutive sequence at same slot

//=========图一=====================

HashEntry<K,V> lastRun = e;

int lastIdx = idx;

for (HashEntry<K,V> last = next;

last != null;

last = last.next) {

int k = last.hash & sizeMask;

if (k != lastIdx) {

lastIdx = k;

lastRun = last;

}

}

//=========图一=====================

//=========图二=====================

newTable[lastIdx] = lastRun;

//=========图二=====================

// Clone remaining nodes

//=========图三=====================

for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {

V v = p.value;

int h = p.hash;

int k = h & sizeMask;

HashEntry<K,V> n = newTable[k];

//这里旧的HashEntry不会放到新数组

//而是基于原来的数据创建了一个新的HashEntry对象,放入新数组

newTable[k] = new HashEntry<K,V>(h, p.key, v, n);

}

//=========图三=====================

}

}

}

//采用头插法,将新元素加入到数组中

int nodeIndex = node.hash & sizeMask; // add the new node

node.setNext(newTable[nodeIndex]);

newTable[nodeIndex] = node;

table = newTable;

}

图一

ConcurrentHashMap源码剖析

图二

ConcurrentHashMap源码剖析

图三

ConcurrentHashMap源码剖析

1.5 jdk1.7集合长度获取

public int size() {

// Try a few times to get accurate count. On failure due to

// continuous async changes in table, resort to locking.

final Segment<K,V>[] segments = this.segments;

int size;

boolean overflow; // true if size overflows 32 bits

long sum; // sum of modCounts

long last = 0L; // previous sum

int retries = -1; // first iteration isn't retry

try {

for (;;) {

//当第5次走到这个地方时,会将整个Segment[]的所有Segment对象锁住

if (retries++ == RETRIES_BEFORE_LOCK) {

for (int j = 0; j < segments.length; ++j)

ensureSegment(j).lock(); // force creation

}

sum = 0L;

size = 0;

overflow = false;

for (int j = 0; j < segments.length; ++j) {

Segment<K,V> seg = segmentAt(segments, j);

if (seg != null) {

//累加所有Segment的操作次数

sum += seg.modCount;

int c = seg.count;

//累加所有segment中的元素个数 size+=c

if (c < 0 || (size += c) < 0)

overflow = true;

}

}

//当这次累加值和上一次累加值一样,证明没有进行新的增删改操作,返回sum

//第一次last为0,如果有元素的话,这个for循环最少循环两次的

if (sum == last)

break;

//记录累加的值

last = sum;

}

} finally {

//如果之前有锁住,解锁

if (retries > RETRIES_BEFORE_LOCK) {

for (int j = 0; j < segments.length; ++j)

segmentAt(segments, j).unlock();

}

}

//溢出,返回int的最大值,否则返回累加的size

return overflow ? Integer.MAX_VALUE : size;

}

2. ConcurrentHashMap源码分析(JDK1.8

2.1 jdk1.8容器初始化

jdk8ConcurrentHashMap中一共有5个构造方法,这四个构造方法中都没有对内部的数组做初始化, 只是对一些变量的初始值做了处理

jdk8ConcurrentHashMap的数组初始化是在第一次添加元素时完成

//没有维护任何变量的操作,如果调用该方法,数组长度默认是16

public ConcurrentHashMap() {

}

//传递进来一个初始容量,ConcurrentHashMap会基于这个值计算一个比这个值大的2的幂次方数作为初始容量

public ConcurrentHashMap(int initialCapacity) {

if (initialCapacity < 0)

throw new IllegalArgumentException();

int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?

MAXIMUM_CAPACITY :

tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));

this.sizeCtl = cap;

}

注意:调用这个方法,得到的初始容量和我们之前讲的HashMap以及jdk7ConcurrentHashMap不同,即使你传递的是一个2的幂次方数,该方法计算出来的初始容量依然是比这个值大的2的幂次方数

//调用四个参数的构造

public ConcurrentHashMap(int initialCapacity, float loadFactor) {

this(initialCapacity, loadFactor, 1);

}

//计算一个大于或者等于给定的容量值,该值是2的幂次方数作为初始容量

public ConcurrentHashMap(int initialCapacity,

float loadFactor, int concurrencyLevel) {

if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)

throw new IllegalArgumentException();

if (initialCapacity < concurrencyLevel) // Use at least as many bins

initialCapacity = concurrencyLevel; // as estimated threads

long size = (long)(1.0 + (long)initialCapacity / loadFactor);

int cap = (size >= (long)MAXIMUM_CAPACITY) ?

MAXIMUM_CAPACITY : tableSizeFor((int)size);

this.sizeCtl = cap;

}

//基于一个Map集合,构建一个ConcurrentHashMap

//初始容量为16

public ConcurrentHashMap(Map<? extends K, ? extends V> m) {

this.sizeCtl = DEFAULT_CAPACITY;

putAll(m);

}

sizeCtl含义解释

注意:以上这些构造方法中,都涉及到一个变量sizeCtl,这个变量是一个非常重要的变量,而且具有非常丰富的含义,它的值不同,对应的含义也不一样,这里我们先对这个变量不同的值的含义做一下说明,后续源码分析过程中,进一步解释

sizeCtl为0,代表数组未初始化, 且数组的初始容量为16

sizeCtl为正数,如果数组未初始化,那么其记录的是数组的初始容量,如果数组已经初始化,那么其记录的是数组的扩容阈值

sizeCtl为-1,表示数组正在进行初始化

sizeCtl小于0,并且不是-1,表示数组正在扩容, -(1+n),表示此时有n个线程正在共同完成数组的扩容操作

2.2 jdk1.8添加安全

public V put(K key, V value) {

return putVal(key, value, false);

}

final V putVal(K key, V value, boolean onlyIfAbsent) {

//如果有空值或者空键,直接抛异常

if (key == null || value == null) throw new NullPointerException();

//基于key计算hash值,并进行一定的扰动

int hash = spread(key.hashCode());

//记录某个桶上元素的个数,如果超过8个,会转成红黑树

int binCount = 0;

for (Node<K,V>[] tab = table;;) {

Node<K,V> f; int n, i, fh;

//如果数组还未初始化,先对数组进行初始化

if (tab == null || (n = tab.length) == 0)

tab = initTable();

//如果hash计算得到的桶位置没有元素,利用cas将元素添加

else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {

//cas+自旋(和外侧的for构成自旋循环),保证元素添加安全

if (casTabAt(tab, i, null,

new Node<K,V>(hash, key, value, null)))

break; // no lock when adding to empty bin

}

//如果hash计算得到的桶位置元素的hash值为MOVED,证明正在扩容,那么协助扩容

else if ((fh = f.hash) == MOVED)

tab = helpTransfer(tab, f);

else {

//hash计算的桶位置元素不为空,且当前没有处于扩容操作,进行元素添加

V oldVal = null;

//对当前桶进行加锁,保证线程安全,执行元素添加操作

synchronized (f) {

if (tabAt(tab, i) == f) { // 再次检查链表头节点是否改变,没有改变就继续操作

//普通链表节点

if (fh >= 0) {

binCount = 1;

for (Node<K,V> e = f;; ++binCount) {

K ek;

if (e.hash == hash &&

((ek = e.key) == key ||

(ek != null && key.equals(ek)))) {

oldVal = e.val;

if (!onlyIfAbsent)

e.val = value;

break;

}

Node<K,V> pred = e;

if ((e = e.next) == null) {

pred.next = new Node<K,V>(hash, key,

value, null);

break;

}

}

}

//树节点,将元素添加到红黑树中

else if (f instanceof TreeBin) {

Node<K,V> p;

binCount = 2;

if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,

value)) != null) {

oldVal = p.val;

if (!onlyIfAbsent)

p.val = value;

}

}

}

}

if (binCount != 0) {

//链表长度大于/等于8,将链表转成红黑树

if (binCount >= TREEIFY_THRESHOLD)

treeifyBin(tab, i);

//如果是重复键,直接将旧值返回

if (oldVal != null)

return oldVal;

break;

}

}

}

//添加的是新元素,维护集合长度,并判断是否要进行扩容操作

addCount(1L, binCount);

return null;

}

通过以上源码,可以看到,当需要添加元素时,会针对当前元素所对应的桶位进行加锁操作,这样一方面保证元素添加时,多线程的安全,同时对某个桶位加锁不会影响其他桶位的操作,进一步提升多线程的并发效率

数组初始化,initTable方法

private final Node<K,V>[] initTable() {

Node<K,V>[] tab; int sc;

//cas+自旋,保证线程安全,对数组进行初始化操作

while ((tab = table) == null || tab.length == 0) {

//如果sizeCtl的值(-1)小于0,说明此时正在初始化, 让出cpu

if ((sc = sizeCtl) < 0)

Thread.yield(); // lost initialization race; just spin

//cas修改sizeCtl的值为-1,修改成功,进行数组初始化,失败,继续自旋

else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {

try {

if ((tab = table) == null || tab.length == 0) {

//sizeCtl为0,取默认长度16,否则去sizeCtl的值

int n = (sc > 0) ? sc : DEFAULT_CAPACITY;

@SuppressWarnings("unchecked")

//基于初始长度,构建数组对象

Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];

table = tab = nt;

//计算扩容阈值,并赋值给sc

sc = n - (n >>> 2);

}

} finally {

//将扩容阈值,赋值给sizeCtl

sizeCtl = sc;

}

break;

}

}

return tab;

}

put加锁图解

ConcurrentHashMap源码剖析

2.3 jdk1.8扩容安全

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {

int n = tab.length, stride;

//如果是多cpu,那么每个线程划分任务,最小任务量是16个桶位的迁移

if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)

stride = MIN_TRANSFER_STRIDE; // subdivide range

//如果是扩容线程,此时新数组为null

if (nextTab == null) { // initiating

try {

@SuppressWarnings("unchecked")

//两倍扩容创建新数组

Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];

nextTab = nt;

} catch (Throwable ex) { // try to cope with OOME

sizeCtl = Integer.MAX_VALUE;

return;

}

nextTable = nextTab;

//记录线程开始迁移的桶位,从后往前迁移

transferIndex = n;

}

//记录新数组的末尾

int nextn = nextTab.length;

//已经迁移的桶位,会用这个节点占位(这个节点的hash值为-1--MOVED)

ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);

boolean advance = true;

boolean finishing = false; // to ensure sweep before committing nextTab

for (int i = 0, bound = 0;;) {

Node<K,V> f; int fh;

while (advance) {

int nextIndex, nextBound;

//i记录当前正在迁移桶位的索引值

//bound记录下一次任务迁移的开始桶位

//--i >= bound 成立表示当前线程分配的迁移任务还没有完成

if (--i >= bound || finishing)

advance = false;

//没有元素需要迁移 -- 后续会去将扩容线程数减1,并判断扩容是否完成

else if ((nextIndex = transferIndex) <= 0) {

i = -1;

advance = false;

}

//计算下一次任务迁移的开始桶位,并将这个值赋值给transferIndex

else if (U.compareAndSwapInt

(this, TRANSFERINDEX, nextIndex,

nextBound = (nextIndex > stride ?

nextIndex - stride : 0))) {

bound = nextBound;

i = nextIndex - 1;

advance = false;

}

}

//如果没有更多的需要迁移的桶位,就进入该if

if (i < 0 || i >= n || i + n >= nextn) {

int sc;

//扩容结束后,保存新数组,并重新计算扩容阈值,赋值给sizeCtl

if (finishing) {

nextTable = null;

table = nextTab;

sizeCtl = (n << 1) - (n >>> 1);

return;

}

//扩容任务线程数减1

if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {

//判断当前所有扩容任务线程是否都执行完成

if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)

return;

//所有扩容线程都执行完,标识结束

finishing = advance = true;

i = n; // recheck before commit

}

}

//当前迁移的桶位没有元素,直接在该位置添加一个fwd节点

else if ((f = tabAt(tab, i)) == null)

advance = casTabAt(tab, i, null, fwd);

//当前节点已经被迁移

else if ((fh = f.hash) == MOVED)

advance = true; // already processed

else {

//当前节点需要迁移,加锁迁移,保证多线程安全

//此处迁移逻辑和jdk7的ConcurrentHashMap相同,不再赘述

synchronized (f) {

if (tabAt(tab, i) == f) {

Node<K,V> ln, hn;

if (fh >= 0) {

int runBit = fh & n;

Node<K,V> lastRun = f;

for (Node<K,V> p = f.next; p != null; p = p.next) {

int b = p.hash & n;

if (b != runBit) {

runBit = b;

lastRun = p;

}

}

if (runBit == 0) {

ln = lastRun;

hn = null;

}

else {

hn = lastRun;

ln = null;

}

for (Node<K,V> p = f; p != lastRun; p = p.next) {

int ph = p.hash; K pk = p.key; V pv = p.val;

if ((ph & n) == 0)

ln = new Node<K,V>(ph, pk, pv, ln);

else

hn = new Node<K,V>(ph, pk, pv, hn);

}

setTabAt(nextTab, i, ln);

setTabAt(nextTab, i + n, hn);

setTabAt(tab, i, fwd);

advance = true;

}

else if (f instanceof TreeBin) {

TreeBin<K,V> t = (TreeBin<K,V>)f;

TreeNode<K,V> lo = null, loTail = null;

TreeNode<K,V> hi = null, hiTail = null;

int lc = 0, hc = 0;

for (Node<K,V> e = t.first; e != null; e = e.next) {

int h = e.hash;

TreeNode<K,V> p = new TreeNode<K,V>

(h, e.key, e.val, null, null);

if ((h & n) == 0) {

if ((p.prev = loTail) == null)

lo = p;

else

loTail.next = p;

loTail = p;

++lc;

}

else {

if ((p.prev = hiTail) == null)

hi = p;

else

hiTail.next = p;

hiTail = p;

++hc;

}

}

ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :

(hc != 0) ? new TreeBin<K,V>(lo) : t;

hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :

(lc != 0) ? new TreeBin<K,V>(hi) : t;

setTabAt(nextTab, i, ln);

setTabAt(nextTab, i + n, hn);

setTabAt(tab, i, fwd);

advance = true;

}

}

}

}

}

}

示意图

ConcurrentHashMap源码剖析

2.4 jdk1.8多线程扩容效率改进

多线程协助扩容的操作会在两个地方被触发:

① 当添加元素时,发现添加的元素对用的桶位为fwd节点,就会先去协助扩容,然后再添加元素

② 当添加完元素后,判断当前元素个数达到了扩容阈值,此时发现sizeCtl的值小于0,并且新数组不为空,这个时候,会去协助扩容

2.4.1 元素未添加,先协助扩容,扩容完后再添加元素

final V putVal(K key, V value, boolean onlyIfAbsent) {

if (key == null || value == null) throw new NullPointerException();

int hash = spread(key.hashCode());

int binCount = 0;

for (Node<K,V>[] tab = table;;) {

Node<K,V> f; int n, i, fh;

if (tab == null || (n = tab.length) == 0)

tab = initTable();

else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {

if (casTabAt(tab, i, null,

new Node<K,V>(hash, key, value, null)))

break; // no lock when adding to empty bin

}

//发现此处为fwd节点,协助扩容,扩容结束后,再循环回来添加元素

else if ((fh = f.hash) == MOVED)

tab = helpTransfer(tab, f);

//省略代码

final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {

Node<K,V>[] nextTab; int sc;

if (tab != null && (f instanceof ForwardingNode) &&

(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {

int rs = resizeStamp(tab.length);

while (nextTab == nextTable && table == tab &&

(sc = sizeCtl) < 0) {

if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||

sc == rs + MAX_RESIZERS || transferIndex <= 0)

break;

if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {

//扩容,传递一个不是null的nextTab

transfer(tab, nextTab);

break;

}

}

return nextTab;

}

return table;

}

2.4.2 先添加元素,再协助扩容

private final void addCount(long x, int check) {

//省略代码

if (check >= 0) {

Node<K,V>[] tab, nt; int n, sc;

//元素个数达到扩容阈值

while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&

(n = tab.length) < MAXIMUM_CAPACITY) {

int rs = resizeStamp(n);

//sizeCtl小于0,说明正在执行扩容,那么协助扩容

if (sc < 0) {

if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||

sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||

transferIndex <= 0)

break;

if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))

transfer(tab, nt);

}

else if (U.compareAndSwapInt(this, SIZECTL, sc,

(rs << RESIZE_STAMP_SHIFT) + 2))

transfer(tab, null);

s = sumCount();

}

}

}

注意:扩容的代码都在transfer方法中

图解

ConcurrentHashMap源码剖析

2.5 集合长度的累计方式

2.5.1 addCount方法

① CounterCell数组不为空,优先利用数组中的CounterCell记录数量

② 如果数组为空,尝试对baseCount进行累加,失败后,会执行fullAddCount逻辑

③ 如果是添加元素操作,会继续判断是否需要扩容

private final void addCount(long x, int check) {

CounterCell[] as; long b, s;

//当CounterCell数组不为空,则优先利用数组中的CounterCell记录数量

//或者当baseCount的累加操作失败,会利用数组中的CounterCell记录数量

if ((as = counterCells) != null ||

!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {

CounterCell a; long v; int m;

//标识是否有多线程竞争

boolean uncontended = true;

//当as数组为空

//或者当as长度为0

//或者当前线程对应的as数组桶位的元素为空

//或者当前线程对应的as数组桶位不为空,但是累加失败

if (as == null || (m = as.length - 1) < 0 ||

(a = as[ThreadLocalRandom.getProbe() & m]) == null ||

!(uncontended =

U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {

//以上任何一种情况成立,都会进入该方法,传入的uncontended是false

fullAddCount(x, uncontended);

return;

}

if (check <= 1)

return;

//计算元素个数

s = sumCount();

}

if (check >= 0) {

Node<K,V>[] tab, nt; int n, sc;

//当元素个数达到扩容阈值

//并且数组不为空

//并且数组长度小于限定的最大值

//满足以上所有条件,执行扩容

while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&

(n = tab.length) < MAXIMUM_CAPACITY) {

//这个是一个很大的正数

int rs = resizeStamp(n);

//sc小于0,说明有线程正在扩容,那么会协助扩容

if (sc < 0) {

//扩容结束或者扩容线程数达到最大值或者扩容后的数组为null或者没有更多的桶位需要转移,结束操作

if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||

sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||

transferIndex <= 0)

break;

//扩容线程加1,成功后,进行协助扩容操作

if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))

//协助扩容,newTable不为null

transfer(tab, nt);

}

//没有其他线程在进行扩容,达到扩容阈值后,给sizeCtl赋了一个很大的负数

//1+1=2 --》 代表此时有一个线程在扩容

//rs << RESIZE_STAMP_SHIFT)是一个很大的负数

else if (U.compareAndSwapInt(this, SIZECTL, sc,

(rs << RESIZE_STAMP_SHIFT) + 2))

//扩容,newTable为null

transfer(tab, null);

s = sumCount();

}

}

}

2.5.2 fullAddCount方法

① 当CounterCell数组不为空,优先对CounterCell数组中的CounterCell的value累加

② 当CounterCell数组为空,会去创建CounterCell数组,默认长度为2,并对数组中的CounterCell的value累加

③ 当数组为空,并且此时有别的线程正在创建数组,那么尝试对baseCount做累加,成功即返回,否则自旋

private final void fullAddCount(long x, boolean wasUncontended) {

int h;

//获取当前线程的hash值

if ((h = ThreadLocalRandom.getProbe()) == 0) {

ThreadLocalRandom.localInit(); // force initialization

h = ThreadLocalRandom.getProbe();

wasUncontended = true;

}

//标识是否有冲突,如果最后一个桶不是null,那么为true

boolean collide = false; // True if last slot nonempty

for (;;) {

CounterCell[] as; CounterCell a; int n; long v;

//数组不为空,优先对数组中CouterCell的value累加

if ((as = counterCells) != null && (n = as.length) > 0) {

//线程对应的桶位为null

if ((a = as[(n - 1) & h]) == null) {

if (cellsBusy == 0) { // Try to attach new Cell

//创建CounterCell对象

CounterCell r = new CounterCell(x); // Optimistic create

//利用CAS修改cellBusy状态为1,成功则将刚才创建的CounterCell对象放入数组中

if (cellsBusy == 0 &&

U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {

boolean created = false;

try { // Recheck under lock

CounterCell[] rs; int m, j;

//桶位为空, 将CounterCell对象放入数组

if ((rs = counterCells) != null &&

(m = rs.length) > 0 &&

rs[j = (m - 1) & h] == null) {

rs[j] = r;

//表示放入成功

created = true;

}

} finally {

cellsBusy = 0;

}

if (created) //成功退出循环

break;

//桶位已经被别的线程放置了已给CounterCell对象,继续循环

continue; // Slot is now non-empty

}

}

collide = false;

}

//桶位不为空,重新计算线程hash值,然后继续循环

else if (!wasUncontended) // CAS already known to fail

wasUncontended = true; // Continue after rehash

//重新计算了hash值后,对应的桶位依然不为空,对value累加

//成功则结束循环

//失败则继续下面判断

else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))

break;

//数组被别的线程改变了,或者数组长度超过了可用cpu大小,重新计算线程hash值,否则继续下一个判断

else if (counterCells != as || n >= NCPU)

collide = false; // At max size or stale

//当没有冲突,修改为有冲突,并重新计算线程hash,继续循环

else if (!collide)

collide = true;

//如果CounterCell的数组长度没有超过cpu核数,对数组进行两倍扩容

//并继续循环

else if (cellsBusy == 0 &&

U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {

try {

if (counterCells == as) {// Expand table unless stale

CounterCell[] rs = new CounterCell[n << 1];

for (int i = 0; i < n; ++i)

rs[i] = as[i];

counterCells = rs;

}

} finally {

cellsBusy = 0;

}

collide = false;

continue; // Retry with expanded table

}

h = ThreadLocalRandom.advanceProbe(h);

}

//CounterCell数组为空,并且没有线程在创建数组,修改标记,并创建数组

else if (cellsBusy == 0 && counterCells == as &&

U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {

boolean init = false;

try { // Initialize table

if (counterCells == as) {

CounterCell[] rs = new CounterCell[2];

rs[h & 1] = new CounterCell(x);

counterCells = rs;

init = true;

}

} finally {

cellsBusy = 0;

}

if (init)

break;

}

//数组为空,并且有别的线程在创建数组,那么尝试对baseCount做累加,成功就退出循环,失败就继续循环

else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))

break; // Fall back on using base

}

}

图解

fullAddCount方法中,当as数组不为空的逻辑图解

ConcurrentHashMap源码剖析

2.6 jdk1.8集合长度获取

public int size() {

long n = sumCount();

return ((n < 0L) ? 0 :

(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :

(int)n);

}

sumCount方法

final long sumCount() {

CounterCell[] as = counterCells; CounterCell a;

//获取baseCount的值

long sum = baseCount;

if (as != null) {

//遍历CounterCell数组,累加每一个CounterCell的value值

for (int i = 0; i < as.length; ++i) {

if ((a = as[i]) != null)

sum += a.value;

}

}

return sum;

}

注意:这个方法并不是线程安全的

以上是 ConcurrentHashMap源码剖析 的全部内容, 来源链接: utcz.com/a/122224.html

回到顶部