ConcurrentHashMap源码剖析
1. ConcurrentHashMap源码分析(JDK1.7
)
1.1 Unsafe介绍
1.1.1 Unsafe简介
Unsafe类相当于是一个java语言中的后门类,提供了硬件级别的原子操作,所以在一些并发编程中被大量使用。jdk已经作出说明,该类对程序员而言不是一个安全操作,在后续的jdk升级过程中,可能会禁用该类。所以这个类的使用是一把双刃剑,实际项目中谨慎使用,以免造成jdk升级不兼容问题
1.1.2 Unsafe Api
这里并不系统讲解Unsafe的所有功能,只介绍和接下来内容相关的操作
arrayBaseOffset
:获取数组的基础偏移量
arrayIndexScale
:获取数组中元素的偏移间隔,要获取对应所以的元素,将索引号和该值相乘,获得数组中指定角标元素的偏移量
getObjectVolatile
:获取对象上的属性值或者数组中的元素
getObject
:获取对象上的属性值或者数组中的元素,已过时
putOrderedObject
:设置对象的属性值或者数组中某个角标的元素,更高效
putObjectVolatile
:设置对象的属性值或者数组中某个角标的元素
putObject
:设置对象的属性值或者数组中某个角标的元素,已过时
1.1.3 代码演示
public class Test02 {public static void main(String[] args) throws Exception {
Integer[] arr = {2,5,1,8,10};
//获取Unsafe对象
Unsafe unsafe = getUnsafe();
//获取Integer[]的基础偏移量
int baseOffset = unsafe.arrayBaseOffset(Integer[].class);
//获取Integer[]中元素的偏移间隔
int indexScale = unsafe.arrayIndexScale(Integer[].class);
//获取数组中索引为2的元素对象
Object o = unsafe.getObjectVolatile(arr, (2 * indexScale) + baseOffset);
System.out.println(o); //1
//设置数组中索引为2的元素值为100
unsafe.putOrderedObject(arr,(2 * indexScale) + baseOffset,100);
System.out.println(Arrays.toString(arr));//[2, 5, 100, 8, 10]
}
//反射获取Unsafe对象
public static Unsafe getUnsafe() throws Exception {
Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
theUnsafe.setAccessible(true);
return (Unsafe) theUnsafe.get(null);
}
}
示意图
1.2 jdk1.7
容器初始化
1.2.1 源码解析
无参构造
//空参构造public ConcurrentHashMap() {
//调用本类的带参构造
//DEFAULT_INITIAL_CAPACITY = 16
//DEFAULT_LOAD_FACTOR = 0.75f
//int DEFAULT_CONCURRENCY_LEVEL = 16
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}
三个参数的构造:一些非核心逻辑的代码已经省略
//initialCapacity 定义ConcurrentHashMap存放元素的容量//concurrencyLevel 定义ConcurrentHashMap中Segment[]的大小
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
int sshift = 0;
int ssize = 1;
//计算Segment[]的大小,保证是2的幂次方数
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
//这两个值用于后面计算Segment[]的角标
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
//计算每个Segment中存储元素的个数
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
//最小Segment中存储元素的个数为2
int cap = MIN_SEGMENT_TABLE_CAPACITY;
////矫正每个Segment中存储元素的个数,保证是2的幂次方,最小为2
while (cap < c)
cap <<= 1;
//创建一个Segment对象,作为其他Segment对象的模板
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
//利用Unsafe类,将创建的Segment对象存入0角标位置
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}
综上:ConcurrentHashMap
中保存了一个默认长度为16的Segment[],每个Segment元素中保存了一个默认长度为2的HashEntry[],添加的元素是存入对应的Segment
中的HashEntry
[]中。所以ConcurrentHashMap
中默认元素的长度是32个,而不是16个
示意图:
1.2.2 Segment是什么?
static final class Segment<K,V> extends ReentrantLock implements Serializable {...
}
Segment
是继承自ReentrantLock
的,它可以实现同步操作,从而保证多线程下的安全。因为每个Segment
之间的锁互不影响,所以也将ConcurrentHashMap
中的这种锁机制称之为分段锁,这比HashTable
的线程安全操作高效的多
1.2.3 HashEntry是什么?
//ConcurrentHashMap中真正存储数据的对象static final class HashEntry<K,V> {
final int hash; //通过运算,得到的键的hash值
final K key; // 存入的键
volatile V value; //存入的值
volatile HashEntry<K,V> next; //记录下一个元素,形成单向链表
HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
}
1.3 jdk1.7
添加操作
1.3.1 源码分析
ConcurrentHashMap的put方法
public V put(K key, V value) {Segment<K,V> s;
if (value == null)
throw new NullPointerException();
//基于key,计算hash值
int hash = hash(key);
//因为一个键要计算两个数组的索引,为了避免冲突,这里取高位计算Segment[]的索引
int j = (hash >>> segmentShift) & segmentMask;
//判断该索引位的Segment对象是否创建,没有就创建
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
//调用Segmetn的put方法实现元素添加
return s.put(key, hash, value, false);
}
ConcurrentHashMap的ensureSegment方法
//创建对应索引位的Segment对象,并返回private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // 需要创建的Segment对象的下标索引
Segment<K,V> seg;
//获取,如果为null,即创建
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
//以0角标位的Segment为模板
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
int cap = proto.table.length;
float lf = proto.loadFactor;
int threshold = (int)(cap * lf);
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
//获取,如果为null,即创建
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { // 二次检查
//创建
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
//自旋方式,将创建的Segment对象放到Segment[]中,确保线程安全
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
//返回
return seg;
}
Segment的put方法
final V put(K key, int hash, V value, boolean onlyIfAbsent) {//尝试获取锁,获取成功,node为null,代码向下执行
//如果有其他线程占据锁对象,那么去做别的事情,而不是一直等待,提升效率
//scanAndLockForPut 稍后分析
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
//取hash的低位,计算HashEntry[]的索引
int index = (tab.length - 1) & hash;
//获取索引位的元素对象
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
//获取的元素对象不为空
if (e != null) {
K k;
//如果是重复元素,覆盖原值
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
//如果不是重复元素,获取链表的下一个元素,继续循环遍历链表
e = e.next;
}
else { //如果获取到的元素为空
//当前添加的键值对的HashEntry对象已经创建
if (node != null)
node.setNext(first); //头插法关联即可
else
//创建当前添加的键值对的HashEntry对象
node = new HashEntry<K,V>(hash, key, value, first);
//添加的元素数量递增
int c = count + 1;
//判断是否需要扩容
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
//需要扩容
rehash(node);
else
//不需要扩容
//将当前添加的元素对象,存入数组角标位,完成头插法添加元素
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
//释放锁
unlock();
}
return oldValue;
}
Segment的scanAndLockForPut方法
该方法在线程没有获取到锁的情况下,去完成HashEntry对象的创建,提升效率但是这个操作个人感觉有点累赘了
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {//获取头部元素
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; // negative while locating node
while (!tryLock()) {
//获取锁失败
HashEntry<K,V> f; // to recheck first below
if (retries < 0) {
//没有下一个节点,并且也不是重复元素,创建HashEntry对象,不再遍历
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
//重复元素,不创建HashEntry对象,不再遍历
retries = 0;
else
//继续遍历下一个节点
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
//如果尝试获取锁的次数过多,直接阻塞
//MAX_SCAN_RETRIES会根据可用cpu核数来确定
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
//如果期间有别的线程获取锁,重新遍历
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
}
1.3.2 模拟多线程的代码流程
这里“通话”和“重地”的哈希值是一样的,那么他们添加时,会存入同一个Segment对象,必然会存在锁竞争
public static void main(String[] args) throws Exception {final ConcurrentHashMap chm = new ConcurrentHashMap();
new Thread(){
@Override
public void run() {
chm.put("通话","11");
System.out.println("-----------");
}
}.start();
//让第一个线程先启动,进入put方法
Thread.sleep(1000);
new Thread(){
@Override
public void run() {
chm.put("重地","22");
System.out.println("===========");
}
}.start();
}
断点设置
运行结果
会发现两个线程,分别停在不同的断点位置,这就是多线程锁互斥产生的结果然后就可以分别让不同的线程向下执行,查看代码走向了。
1.4 jdk1.7
扩容安全
源码分析
private void rehash(HashEntry<K,V> node) {HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
//两倍容量
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
//基于新容量,创建HashEntry数组
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
//实现数据迁移
for (int i = 0; i < oldCapacity ; i++) {
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
//原位置只有一个元素,直接放到新数组即可
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
//=========图一=====================
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
//=========图一=====================
//=========图二=====================
newTable[lastIdx] = lastRun;
//=========图二=====================
// Clone remaining nodes
//=========图三=====================
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
//这里旧的HashEntry不会放到新数组
//而是基于原来的数据创建了一个新的HashEntry对象,放入新数组
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
//=========图三=====================
}
}
}
//采用头插法,将新元素加入到数组中
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
}
图一
图二
图三
1.5 jdk1.7
集合长度获取
public int size() {// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
//当第5次走到这个地方时,会将整个Segment[]的所有Segment对象锁住
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
//累加所有Segment的操作次数
sum += seg.modCount;
int c = seg.count;
//累加所有segment中的元素个数 size+=c
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
//当这次累加值和上一次累加值一样,证明没有进行新的增删改操作,返回sum
//第一次last为0,如果有元素的话,这个for循环最少循环两次的
if (sum == last)
break;
//记录累加的值
last = sum;
}
} finally {
//如果之前有锁住,解锁
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
//溢出,返回int的最大值,否则返回累加的size
return overflow ? Integer.MAX_VALUE : size;
}
2. ConcurrentHashMap源码分析(JDK1.8
)
2.1 jdk1.8
容器初始化
在jdk8
的ConcurrentHashMap
中一共有5个构造方法,这四个构造方法中都没有对内部的数组做初始化, 只是对一些变量的初始值做了处理
jdk8
的ConcurrentHashMap
的数组初始化是在第一次添加元素时完成
//没有维护任何变量的操作,如果调用该方法,数组长度默认是16public ConcurrentHashMap() {
}
//传递进来一个初始容量,ConcurrentHashMap会基于这个值计算一个比这个值大的2的幂次方数作为初始容量public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
注意:调用这个方法,得到的初始容量和我们之前讲的HashMap
以及jdk7
的ConcurrentHashMap
不同,即使你传递的是一个2的幂次方数,该方法计算出来的初始容量依然是比这个值大的2的幂次方数
//调用四个参数的构造public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
//计算一个大于或者等于给定的容量值,该值是2的幂次方数作为初始容量public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
//基于一个Map集合,构建一个ConcurrentHashMap//初始容量为16
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
sizeCtl
含义解释
注意:以上这些构造方法中,都涉及到一个变量sizeCtl
,这个变量是一个非常重要的变量,而且具有非常丰富的含义,它的值不同,对应的含义也不一样,这里我们先对这个变量不同的值的含义做一下说明,后续源码分析过程中,进一步解释
sizeCtl
为0,代表数组未初始化, 且数组的初始容量为16
sizeCtl
为正数,如果数组未初始化,那么其记录的是数组的初始容量,如果数组已经初始化,那么其记录的是数组的扩容阈值
sizeCtl
为-1,表示数组正在进行初始化
sizeCtl
小于0,并且不是-1,表示数组正在扩容, -(1+n),表示此时有n个线程正在共同完成数组的扩容操作
2.2 jdk1.8
添加安全
public V put(K key, V value) {return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {//如果有空值或者空键,直接抛异常
if (key == null || value == null) throw new NullPointerException();
//基于key计算hash值,并进行一定的扰动
int hash = spread(key.hashCode());
//记录某个桶上元素的个数,如果超过8个,会转成红黑树
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//如果数组还未初始化,先对数组进行初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//如果hash计算得到的桶位置没有元素,利用cas将元素添加
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//cas+自旋(和外侧的for构成自旋循环),保证元素添加安全
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
//如果hash计算得到的桶位置元素的hash值为MOVED,证明正在扩容,那么协助扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
//hash计算的桶位置元素不为空,且当前没有处于扩容操作,进行元素添加
V oldVal = null;
//对当前桶进行加锁,保证线程安全,执行元素添加操作
synchronized (f) {
if (tabAt(tab, i) == f) { // 再次检查链表头节点是否改变,没有改变就继续操作
//普通链表节点
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//树节点,将元素添加到红黑树中
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
//链表长度大于/等于8,将链表转成红黑树
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
//如果是重复键,直接将旧值返回
if (oldVal != null)
return oldVal;
break;
}
}
}
//添加的是新元素,维护集合长度,并判断是否要进行扩容操作
addCount(1L, binCount);
return null;
}
通过以上源码,可以看到,当需要添加元素时,会针对当前元素所对应的桶位进行加锁操作,这样一方面保证元素添加时,多线程的安全,同时对某个桶位加锁不会影响其他桶位的操作,进一步提升多线程的并发效率
数组初始化,initTable方法
private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;
//cas+自旋,保证线程安全,对数组进行初始化操作
while ((tab = table) == null || tab.length == 0) {
//如果sizeCtl的值(-1)小于0,说明此时正在初始化, 让出cpu
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
//cas修改sizeCtl的值为-1,修改成功,进行数组初始化,失败,继续自旋
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
//sizeCtl为0,取默认长度16,否则去sizeCtl的值
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
//基于初始长度,构建数组对象
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
//计算扩容阈值,并赋值给sc
sc = n - (n >>> 2);
}
} finally {
//将扩容阈值,赋值给sizeCtl
sizeCtl = sc;
}
break;
}
}
return tab;
}
put加锁图解
2.3 jdk1.8
扩容安全
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {int n = tab.length, stride;
//如果是多cpu,那么每个线程划分任务,最小任务量是16个桶位的迁移
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
//如果是扩容线程,此时新数组为null
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
//两倍扩容创建新数组
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
//记录线程开始迁移的桶位,从后往前迁移
transferIndex = n;
}
//记录新数组的末尾
int nextn = nextTab.length;
//已经迁移的桶位,会用这个节点占位(这个节点的hash值为-1--MOVED)
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
//i记录当前正在迁移桶位的索引值
//bound记录下一次任务迁移的开始桶位
//--i >= bound 成立表示当前线程分配的迁移任务还没有完成
if (--i >= bound || finishing)
advance = false;
//没有元素需要迁移 -- 后续会去将扩容线程数减1,并判断扩容是否完成
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
//计算下一次任务迁移的开始桶位,并将这个值赋值给transferIndex
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//如果没有更多的需要迁移的桶位,就进入该if
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
//扩容结束后,保存新数组,并重新计算扩容阈值,赋值给sizeCtl
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
//扩容任务线程数减1
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
//判断当前所有扩容任务线程是否都执行完成
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
//所有扩容线程都执行完,标识结束
finishing = advance = true;
i = n; // recheck before commit
}
}
//当前迁移的桶位没有元素,直接在该位置添加一个fwd节点
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
//当前节点已经被迁移
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
//当前节点需要迁移,加锁迁移,保证多线程安全
//此处迁移逻辑和jdk7的ConcurrentHashMap相同,不再赘述
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
示意图
2.4 jdk1.8
多线程扩容效率改进
多线程协助扩容的操作会在两个地方被触发:① 当添加元素时,发现添加的元素对用的桶位为fwd节点,就会先去协助扩容,然后再添加元素
② 当添加完元素后,判断当前元素个数达到了扩容阈值,此时发现sizeCtl的值小于0,并且新数组不为空,这个时候,会去协助扩容
2.4.1 元素未添加,先协助扩容,扩容完后再添加元素
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
//发现此处为fwd节点,协助扩容,扩容结束后,再循环回来添加元素
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
//省略代码
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
//扩容,传递一个不是null的nextTab
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
2.4.2 先添加元素,再协助扩容
private final void addCount(long x, int check) {//省略代码
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
//元素个数达到扩容阈值
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
//sizeCtl小于0,说明正在执行扩容,那么协助扩容
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
注意:扩容的代码都在transfer
方法中
图解
2.5 集合长度的累计方式
2.5.1 addCount方法
① CounterCell数组不为空,优先利用数组中的CounterCell记录数量② 如果数组为空,尝试对baseCount进行累加,失败后,会执行fullAddCount逻辑
③ 如果是添加元素操作,会继续判断是否需要扩容
private final void addCount(long x, int check) {CounterCell[] as; long b, s;
//当CounterCell数组不为空,则优先利用数组中的CounterCell记录数量
//或者当baseCount的累加操作失败,会利用数组中的CounterCell记录数量
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
//标识是否有多线程竞争
boolean uncontended = true;
//当as数组为空
//或者当as长度为0
//或者当前线程对应的as数组桶位的元素为空
//或者当前线程对应的as数组桶位不为空,但是累加失败
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
//以上任何一种情况成立,都会进入该方法,传入的uncontended是false
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
//计算元素个数
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
//当元素个数达到扩容阈值
//并且数组不为空
//并且数组长度小于限定的最大值
//满足以上所有条件,执行扩容
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
//这个是一个很大的正数
int rs = resizeStamp(n);
//sc小于0,说明有线程正在扩容,那么会协助扩容
if (sc < 0) {
//扩容结束或者扩容线程数达到最大值或者扩容后的数组为null或者没有更多的桶位需要转移,结束操作
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
//扩容线程加1,成功后,进行协助扩容操作
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
//协助扩容,newTable不为null
transfer(tab, nt);
}
//没有其他线程在进行扩容,达到扩容阈值后,给sizeCtl赋了一个很大的负数
//1+1=2 --》 代表此时有一个线程在扩容
//rs << RESIZE_STAMP_SHIFT)是一个很大的负数
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
//扩容,newTable为null
transfer(tab, null);
s = sumCount();
}
}
}
2.5.2 fullAddCount方法
① 当CounterCell数组不为空,优先对CounterCell数组中的CounterCell的value累加② 当CounterCell数组为空,会去创建CounterCell数组,默认长度为2,并对数组中的CounterCell的value累加
③ 当数组为空,并且此时有别的线程正在创建数组,那么尝试对baseCount做累加,成功即返回,否则自旋
private final void fullAddCount(long x, boolean wasUncontended) {int h;
//获取当前线程的hash值
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true;
}
//标识是否有冲突,如果最后一个桶不是null,那么为true
boolean collide = false; // True if last slot nonempty
for (;;) {
CounterCell[] as; CounterCell a; int n; long v;
//数组不为空,优先对数组中CouterCell的value累加
if ((as = counterCells) != null && (n = as.length) > 0) {
//线程对应的桶位为null
if ((a = as[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
//创建CounterCell对象
CounterCell r = new CounterCell(x); // Optimistic create
//利用CAS修改cellBusy状态为1,成功则将刚才创建的CounterCell对象放入数组中
if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
//桶位为空, 将CounterCell对象放入数组
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
//表示放入成功
created = true;
}
} finally {
cellsBusy = 0;
}
if (created) //成功退出循环
break;
//桶位已经被别的线程放置了已给CounterCell对象,继续循环
continue; // Slot is now non-empty
}
}
collide = false;
}
//桶位不为空,重新计算线程hash值,然后继续循环
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
//重新计算了hash值后,对应的桶位依然不为空,对value累加
//成功则结束循环
//失败则继续下面判断
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
break;
//数组被别的线程改变了,或者数组长度超过了可用cpu大小,重新计算线程hash值,否则继续下一个判断
else if (counterCells != as || n >= NCPU)
collide = false; // At max size or stale
//当没有冲突,修改为有冲突,并重新计算线程hash,继续循环
else if (!collide)
collide = true;
//如果CounterCell的数组长度没有超过cpu核数,对数组进行两倍扩容
//并继续循环
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
try {
if (counterCells == as) {// Expand table unless stale
CounterCell[] rs = new CounterCell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h = ThreadLocalRandom.advanceProbe(h);
}
//CounterCell数组为空,并且没有线程在创建数组,修改标记,并创建数组
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2];
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
//数组为空,并且有别的线程在创建数组,那么尝试对baseCount做累加,成功就退出循环,失败就继续循环
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break; // Fall back on using base
}
}
图解
fullAddCount方法中,当as数组不为空的逻辑图解
2.6 jdk1.8集合长度获取
public int size() {long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
sumCount
方法
final long sumCount() {CounterCell[] as = counterCells; CounterCell a;
//获取baseCount的值
long sum = baseCount;
if (as != null) {
//遍历CounterCell数组,累加每一个CounterCell的value值
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
注意:这个方法并不是线程安全的
以上是 ConcurrentHashMap源码剖析 的全部内容, 来源链接: utcz.com/a/122224.html