mobilefacenet.cfg参数配置与SVP_NNIE_Cnn实现分析

前面随笔给出了NNIE开发的基本知识,下面几篇随笔将着重于Mobilefacenet NNIE开发,实现mobilefacenet.wk的chip版本,并在Hi3559AV100上实现mobilefacenet网络功能,外接USB摄像头通过MPP平台输出至VO HDMI显示结果。下文是Hi3559AV100 NNIE开发(4)mobilefacenet.cfg参数配置挖坑解决与SVP_NNIE_Cnn实现分析,目前项目需要对mobilefacenet网络进行.wk的开发,下面给出在.wk生成过程中遇到的坑与解决方式,并给出SVP_NNIE_Cnn整体实现的各个step分析,为后面在板载上实现mobilefacenet网络打下基础。

1、mobilefacenet.cfg参数配置挖坑解决

CNN_convert_bin_and_print_featuremap.py和Get Caffe Output这里的预处理方式都是先乘以【data_scale】,再减均值【mean_file】,而在量化生成 .mk 文件时却是先减均值再乘以scale的。

给出预处理这一个环节对输入数据data的处理方式:

1     data = inputs

2 if norm_type == '4' or norm_type == '5':

3 data = data * float(data_scale)

data是uint8类型的array,是先乘以了【data_scale】的,也就是说和NNIE 生成wk中的操作顺序是不一致的,对于mobilefacenet.cfg网络输入数据预处理方法时,当norm_type = 5时,输入数据减通道均值后再乘以 data_scale,如下所示:

Hi3559AV100 NNIE开发(4)mobilefacenet.cfg参数配置挖坑解决与SVP_NNIE_Cnn实现分析Hi3559AV100 NNIE开发(4)mobilefacenet.cfg参数配置挖坑解决与SVP_NNIE_Cnn实现分析

所在在实际操作中,需要对均值文件进行处理,转换方式如下:

 (data - 128.0) * 0.0078125 <==> data * 0.0078125 - 1

因此这里需要做的修改就是需要将【mean_file】pixel_mean_compare.txt修设置为1.0:

Hi3559AV100 NNIE开发(4)mobilefacenet.cfg参数配置挖坑解决与SVP_NNIE_Cnn实现分析

最终生成mobilefacenet.wk,结果如下所示,具体的测试需要下一步进行。

 1 begin parameter compressing....

2

3 end parameter compressing

4

5 begin compress index generating....

6

7 end compress index generating

8

9 begin binary code generating....

10

11 .........................................................................................................................

12 ....................................................................end binary code generating

13

14 begin quant files writing....

15

16 end quant files writing

17

18 .

19 ===============D:\Hi3559_NNIE\3559\mobileface\mobileface.cfg Successfully!===============

20

21 End [RuyiStudio Wk NNIE Mapper] [D:\Hi3559_NNIE\3559\mobileface\mobileface.cfg] mobileface

2、SVP_NNIE_Cnn实现分析

下面给出SAMPLE_SVP_NNIE_Cnn函数的执行过程,主要分为下面八个步骤:

 1     HI_CHAR *pcSrcFile = "./data/nnie_image/y/0_28x28.y";

2 HI_CHAR *pcModelName = "./data/nnie_model/classification/inst_mnist_cycle.wk";

3

4

5 /*Set configuration parameter */

6 stNnieCfg.pszPic= pcSrcFile;

7 stNnieCfg.u32MaxInputNum = u32PicNum; //max input image num in each batch

8 stNnieCfg.u32MaxRoiNum = 0;

9 stNnieCfg.aenNnieCoreId[0] = SVP_NNIE_ID_0;//set NNIE core

10 s_stCnnSoftwareParam.u32TopN = 5;

11

12

13

14 /*Sys init ---step1*/

15 SAMPLE_COMM_SVP_CheckSysInit();

16

17 /*CNN Load model ------step2*/

18 s32Ret = SAMPLE_COMM_SVP_NNIE_LoadModel(pcModelName,&s_stCnnModel);

19

20

21 /*CNN parameter initialization -------step3*/

22 /*Cnn software parameters are set in SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit,

23 if user has changed net struct, please make sure the parameter settings in

24 SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit function are correct*/

25 s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;

26 s32Ret = SAMPLE_SVP_NNIE_Cnn_ParamInit(&stNnieCfg,&s_stCnnNnieParam,&s_stCnnSoftwareParam);

27

28

29 /*record tskBuf -------step4*/

30 s32Ret = HI_MPI_SVP_NNIE_AddTskBuf(&(s_stCnnNnieParam.astForwardCtrl[0].stTskBuf));

31

32

33 /*Fill src data -------step5*/

34 SAMPLE_SVP_TRACE_INFO("Cnn start!\n");

35 stInputDataIdx.u32SegIdx = 0;

36 stInputDataIdx.u32NodeIdx = 0;

37 s32Ret = SAMPLE_SVP_NNIE_FillSrcData(&stNnieCfg,&s_stCnnNnieParam,&stInputDataIdx);

38

39

40 /*NNIE process(process the 0-th segment) -------step6*/

41 stProcSegIdx.u32SegIdx = 0;

42 s32Ret = SAMPLE_SVP_NNIE_Forward(&s_stCnnNnieParam,&stInputDataIdx,&stProcSegIdx,HI_TRUE);

43

44

45

46 /*Software process --------step7*/

47 /*if user has changed net struct, please make sure SAMPLE_SVP_NNIE_Cnn_GetTopN

48 function's input datas are correct*/

49 s32Ret = SAMPLE_SVP_NNIE_Cnn_GetTopN(&s_stCnnNnieParam,&s_stCnnSoftwareParam);

50

51

52

53 /*Print result --------step8*/

54 SAMPLE_SVP_TRACE_INFO("Cnn result:\n");

55 s32Ret = SAMPLE_SVP_NNIE_Cnn_PrintResult(&(s_stCnnSoftwareParam.stGetTopN),

56 s_stCnnSoftwareParam.u32TopN);

  (1)step1为SAMPLE_COMM_SVP_CheckSysInit()

完成的是MPP系统的初始化,主要实现的是Sys_Init和VB_Init,实现MPP内存池的配置,具体实现如下:

 1 HI_VOID SAMPLE_COMM_SVP_CheckSysInit(HI_VOID)

2 {

3 ..............

4 SAMPLE_COMM_SVP_SysInit()

5 {

6 //省略了部分过程,列出实现关键函数

7 HI_MPI_SYS_Exit();

8 HI_MPI_VB_Exit();

9

10 memset(&struVbConf,0,sizeof(VB_CONFIG_S));

11

12 struVbConf.u32MaxPoolCnt = 2;

13 struVbConf.astCommPool[1].u64BlkSize = 768*576*2;

14 struVbConf.astCommPool[1].u32BlkCnt = 1;

15

16 s32Ret = HI_MPI_VB_SetConfig((const VB_CONFIG_S *)&struVbConf); //设置MPP视频缓存池属性

17

18

19 s32Ret = HI_MPI_VB_Init(); //初始化MPP缓存池

20

21

22 s32Ret = HI_MPI_SYS_Init(); //初始化MPP系统

23

24 }

25

26 .............

27 }

  (2)step2为SAMPLE_COMM_SVP_NNIE_LoadModel

函数从用户事先加载到 buf 中的模型中解析出网络模型,其函数实现较为复杂,具体的函数参数解析和函数运行过程已经在前面随笔给出了,需要的话,可以参考随笔:

Hi3559AV100 NNIE开发(1)-RFCN(.wk)LoadModel函数参数解析 (https://www.cnblogs.com/iFrank/p/14500648.html)

Hi3559AV100 NNIE开发(2)-RFCN(.wk)LoadModel及NNIE Init函数运行过程分析   (https://www.cnblogs.com/iFrank/p/14503482.html)

  (3)step3为SAMPLE_SVP_NNIE_Cnn_ParamInit

首先给出调用与定义,便于分析:

 1 /*Set configuration parameter*/

2 stNnieCfg.pszPic= pcSrcFile;

3 stNnieCfg.u32MaxInputNum = u32PicNum; //max input image num in each batch

4 stNnieCfg.u32MaxRoiNum = 0;

5 stNnieCfg.aenNnieCoreId[0] = SVP_NNIE_ID_0;//set NNIE core

6

7 s_stCnnSoftwareParam.u32TopN = 5;

8

9 s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;

10 s32Ret = SAMPLE_SVP_NNIE_Cnn_ParamInit(&stNnieCfg,

11 &s_stCnnNnieParam,

12 &s_stCnnSoftwareParam);

13

14

15

16 static HI_S32 SAMPLE_SVP_NNIE_Cnn_ParamInit(SAMPLE_SVP_NNIE_CFG_S* pstNnieCfg,

17 SAMPLE_SVP_NNIE_PARAM_S *pstCnnPara,

18 SAMPLE_SVP_NNIE_CNN_SOFTWARE_PARAM_S* pstCnnSoftWarePara)

19 {

20 ........

21

22 /*init hardware para*/

23 s32Ret = SAMPLE_COMM_SVP_NNIE_ParamInit(pstNnieCfg,

24 pstCnnPara);

25

26

27 /*init software para*/

28 if(pstCnnSoftWarePara!=NULL)

29 {

30 s32Ret = SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit(pstNnieCfg,

31 pstCnnPara,

32 pstCnnSoftWarePara);

33 "Error(%#x),SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit failed!\n",s32Ret);

34 }

35

36 ........

37 }

其中SAMPLE_COMM_SVP_NNIE_ParamInit函数及参数分析可见之前随笔:

Hi3559AV100 NNIE开发(2)-RFCN(.wk)LoadModel及NNIE Init函数运行过程分析   (https://www.cnblogs.com/iFrank/p/14503482.html),之前的随笔介绍的很详细,这里就不在赘述了。

对SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit函数,首先给出定义:

 1 static HI_S32 SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit(

2 SAMPLE_SVP_NNIE_CFG_S* pstNnieCfg,

3 SAMPLE_SVP_NNIE_PARAM_S *pstCnnPara,

SAMPLE_SVP_NNIE_CNN_SOFTWARE_PARAM_S* pstCnnSoftWarePara)

4 {

5 HI_U32 u32GetTopNMemSize = 0;

6 HI_U32 u32GetTopNAssistBufSize = 0;

7 HI_U32 u32GetTopNPerFrameSize = 0;

8 HI_U32 u32TotalSize = 0;

9 HI_U32 u32ClassNum = pstCnnPara->pstModel->astSeg[0].astDstNode[0].unShape.stWhc.u32Width;

10 HI_U64 u64PhyAddr = 0;

11 HI_U8* pu8VirAddr = NULL;

12 HI_S32 s32Ret = HI_SUCCESS;

13

14 /*get mem size*/

15 u32GetTopNPerFrameSize = pstCnnSoftWarePara->u32TopN*sizeof(SAMPLE_SVP_NNIE_CNN_GETTOPN_UNIT_S);

16 u32GetTopNMemSize = SAMPLE_SVP_NNIE_ALIGN16(u32GetTopNPerFrameSize)*pstNnieCfg->u32MaxInputNum;

17 u32GetTopNAssistBufSize = u32ClassNum*sizeof(SAMPLE_SVP_NNIE_CNN_GETTOPN_UNIT_S);

18 u32TotalSize = u32GetTopNMemSize+u32GetTopNAssistBufSize;

19

20 /*malloc mem*/

21 s32Ret = SAMPLE_COMM_SVP_MallocMem("SAMPLE_CNN_INIT",NULL,(HI_U64*)&u64PhyAddr,

22 (void**)&pu8VirAddr,u32TotalSize);

23 SAMPLE_SVP_CHECK_EXPR_RET(HI_SUCCESS != s32Ret,s32Ret,SAMPLE_SVP_ERR_LEVEL_ERROR,

24 "Error,Malloc memory failed!\n");

25 memset(pu8VirAddr, 0, u32TotalSize);

26

27 /*init GetTopn */

28 pstCnnSoftWarePara->stGetTopN.u32Num= pstNnieCfg->u32MaxInputNum;

29 pstCnnSoftWarePara->stGetTopN.unShape.stWhc.u32Chn = 1;

30 pstCnnSoftWarePara->stGetTopN.unShape.stWhc.u32Height = 1;

31 pstCnnSoftWarePara->stGetTopN.unShape.stWhc.u32Width = u32GetTopNPerFrameSize/sizeof(HI_U32);

32 pstCnnSoftWarePara->stGetTopN.u32Stride = SAMPLE_SVP_NNIE_ALIGN16(u32GetTopNPerFrameSize);

33 pstCnnSoftWarePara->stGetTopN.u64PhyAddr = u64PhyAddr;

34 pstCnnSoftWarePara->stGetTopN.u64VirAddr = (HI_U64)pu8VirAddr;

35

36 /*init AssistBuf */

37 pstCnnSoftWarePara->stAssistBuf.u32Size = u32GetTopNAssistBufSize;

38 pstCnnSoftWarePara->stAssistBuf.u64PhyAddr = u64PhyAddr+u32GetTopNMemSize;

39 pstCnnSoftWarePara->stAssistBuf.u64VirAddr = (HI_U64)pu8VirAddr+u32GetTopNMemSize;

40

41 return s32Ret;

42 }

函数体内最主要功能是实现s_stCnnSoftwareParam参数的赋值,包含大量赋值语句,其中s_stCnnSoftwareParam结构体各个元素赋值的意义等需要的时候再进行研讨,此外函数还实现在用户态分配 MMZ 内存。通过对两个函数的分析,step3 SAMPLE_SVP_NNIE_Cnn_ParamInit()完成。

  (4)step4为HI_MPI_SVP_NNIE_AddTskBuf

为了记录 TskBuf 地址信息,其作用和注意事项:

①记录 TskBuf 地址信息,用于减少内核态内存映射次数,提升效率;

②TskBuf 地址信息的记录是通过链表进行管理,链表长度默认值为 32,链表长度可通过模块参数 nnie_max_tskbuf_num 进行配;

③若没调用 HI_MPI_SVP_NNIE_AddTskBuf 预先把 TskBuf 地址信息记录到系统,那么之后调用 Forward/ForwardWithBbox 每次都会 Map/Unmap 操作 TskBuf 内核态虚拟地址,效率会比较低。

给出函数调用和定义:

1 /*SAMPLE_COMM_SVP_NNIE_LoadModel(pcModelName,&s_stCnnModel);*/

2 s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;

3

4 s32Ret = HI_MPI_SVP_NNIE_AddTskBuf(&(s_stCnnNnieParam.astForwardCtrl[0].stTskBuf));

5

6

7 //定义

8 HI_S32 HI_MPI_SVP_NNIE_AddTskBuf(const SVP_MEM_INFO_S* pstTskBuf);

  (5)step5为SAMPLE_SVP_NNIE_FillSrcData

实现src数据的填充,此函数十分关键,对所给图像数据:./data/nnie_image/y/0_28x28.y进行处理,为了更好的分析数据处理函数,首先给出函数调用信息:

 1     stNnieCfg.pszPic= pcSrcFile;

2 stNnieCfg.u32MaxInputNum = u32PicNum; //max input image num in each batch

3 stNnieCfg.u32MaxRoiNum = 0;

4 stNnieCfg.aenNnieCoreId[0] = SVP_NNIE_ID_0;//set NNIE core

5

6 /*SAMPLE_COMM_SVP_NNIE_LoadModel(pcModelName,&s_stCnnModel);*/

7 s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;

8

9 stInputDataIdx.u32SegIdx = 0;

10 stInputDataIdx.u32NodeIdx = 0;

11 s32Ret = SAMPLE_SVP_NNIE_FillSrcData(&stNnieCfg,

                          &s_stCnnNnieParam,

                          &stInputDataIdx);

为了更加清楚函数功能,先给出函数定义,方便后面分析(忽略一些次要信息):

  1 static HI_S32 SAMPLE_SVP_NNIE_FillSrcData(SAMPLE_SVP_NNIE_CFG_S* pstNnieCfg,

2 SAMPLE_SVP_NNIE_PARAM_S *pstNnieParam,

3 SAMPLE_SVP_NNIE_INPUT_DATA_INDEX_S* pstInputDataIdx)

总的来说,函数实现以下功能:

①open file fopen(pstNnieCfg->pszPic,"rb");

 1 //定义文件名

2 HI_CHAR *pcSrcFile = "./data/nnie_image/y/0_28x28.y";

3

4 stNnieCfg.pszPic= pcSrcFile;

5

6 //函数定义

7 HI_S32 SAMPLE_SVP_NNIE_FillSrcData(SAMPLE_SVP_NNIE_CFG_S* pstNnieCfg,

8 SAMPLE_SVP_NNIE_PARAM_S *pstNnieParam,

9 SAMPLE_SVP_NNIE_INPUT_DATA_INDEX_S* pstInputDataIdx)

10 //函数调用

11 SAMPLE_SVP_NNIE_FillSrcData(&stNnieCfg,

12 &s_stCnnNnieParam,

13 &stInputDataIdx);

14

15 fp = fopen(pstNnieCfg->pszPic,"rb");

②为后面fread读取数据量确定u32VarSize大小:

 1     /*get data size   s32Ret = fread(pu8PicAddr,u32Dim*u32VarSize,1,fp);*/

2 if(SVP_BLOB_TYPE_U8 <= pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].enType &&

3 SVP_BLOB_TYPE_YVU422SP >= pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].enType)

4 {

5 u32VarSize = sizeof(HI_U8);

6 }

7 else

8 {

9 u32VarSize = sizeof(HI_U32);

10 }

③随即通过pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].enType参数(参数找定义,应该是与输入模型.wk的模型参数有关,后面可以直接通过printf进行打印输出,看结果是啥)进行if-lese分支选择,之后通过fread对fp文件指针读取数据,确定数据内存地址,并刷新 cache 里的内容到内存并且使 cache 里的内容无效,最后fclose(fp)。

先给出enType参数类型:

Hi3559AV100 NNIE开发(4)mobilefacenet.cfg参数配置挖坑解决与SVP_NNIE_Cnn实现分析

代码实现:

 1     /*fill src data*/

2 if(SVP_BLOB_TYPE_SEQ_S32 == pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].enType)

3 {

4 u32Dim = pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].unShape.stSeq.u32Dim;

5 u32Stride = pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u32Stride;

6 pu32StepAddr = (HI_U32*)(pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].unShape.stSeq.u64VirAddrStep);

7 pu8PicAddr = (HI_U8*)(pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u64VirAddr);

8 for(n = 0; n < pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u32Num; n++)

9 {

10 for(i = 0;i < *(pu32StepAddr+n); i++)

11 {

12 s32Ret = fread(pu8PicAddr,u32Dim*u32VarSize,1,fp);

13 SAMPLE_SVP_CHECK_EXPR_GOTO(1 != s32Ret,FAIL,SAMPLE_SVP_ERR_LEVEL_ERROR,"Error,Read image file failed!\n");

14 pu8PicAddr += u32Stride;

15 }

16 u32TotalStepNum += *(pu32StepAddr+n);

17 }

18 SAMPLE_COMM_SVP_FlushCache(pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u64PhyAddr,

19 (HI_VOID *) pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u64VirAddr,

20 u32TotalStepNum*u32Stride);

21 }

22 else

23 {

24 u32Height = pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].unShape.stWhc.u32Height;

25 u32Width = pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].unShape.stWhc.u32Width;

26 u32Chn = pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].unShape.stWhc.u32Chn;

27 u32Stride = pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u32Stride;

28 pu8PicAddr = (HI_U8*)(pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u64VirAddr);

29 if(SVP_BLOB_TYPE_YVU420SP== pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].enType)

30 {

31 for(n = 0; n < pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u32Num; n++)

32 {

33 for(i = 0; i < u32Chn*u32Height/2; i++)

34 {

35 s32Ret = fread(pu8PicAddr,u32Width*u32VarSize,1,fp);

36 SAMPLE_SVP_CHECK_EXPR_GOTO(1 != s32Ret,FAIL,SAMPLE_SVP_ERR_LEVEL_ERROR,"Error,Read image file failed!\n");

37 pu8PicAddr += u32Stride;

38 }

39 }

40 }

41 else if(SVP_BLOB_TYPE_YVU422SP== pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].enType)

42 {

43 for(n = 0; n < pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u32Num; n++)

44 {

45 for(i = 0; i < u32Height*2; i++)

46 {

47 s32Ret = fread(pu8PicAddr,u32Width*u32VarSize,1,fp);

48 SAMPLE_SVP_CHECK_EXPR_GOTO(1 != s32Ret,FAIL,SAMPLE_SVP_ERR_LEVEL_ERROR,"Error,Read image file failed!\n");

49 pu8PicAddr += u32Stride;

50 }

51 }

52 }

53 else

54 {

55 for(n = 0; n < pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u32Num; n++)

56 {

57 for(i = 0;i < u32Chn; i++)

58 {

59 for(j = 0; j < u32Height; j++)

60 {

61 s32Ret = fread(pu8PicAddr,u32Width*u32VarSize,1,fp);

62 SAMPLE_SVP_CHECK_EXPR_GOTO(1 != s32Ret,FAIL,SAMPLE_SVP_ERR_LEVEL_ERROR,"Error,Read image file failed!\n");

63 pu8PicAddr += u32Stride;

64 }

65 }

66 }

67 }

68 SAMPLE_COMM_SVP_FlushCache(pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u64PhyAddr,

69 (HI_VOID *) pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u64VirAddr,

70 pstNnieParam->astSegData[u32SegIdx].astSrc[u32NodeIdx].u32Num*u32Chn*u32Height*u32Stride);

71 }

72

73 fclose(fp);

  (6)step6为SAMPLE_SVP_NNIE_Forward实现NNIE process

便于分析先给出函数的调用及参数的定义:

 1     s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;

2 /* SAMPLE_COMM_SVP_NNIE_LoadModel(pcModelName,&s_stCnnModel); */

3

4 stInputDataIdx.u32SegIdx = 0;

5 stInputDataIdx.u32NodeIdx = 0;

6

7 stProcSegIdx.u32SegIdx = 0;

8

9 s32Ret = SAMPLE_SVP_NNIE_Forward(&s_stCnnNnieParam,

10 &stInputDataIdx,

11 &stProcSegIdx,

12 HI_TRUE);

13

14 static HI_S32 SAMPLE_SVP_NNIE_Forward(

15 SAMPLE_SVP_NNIE_PARAM_S *pstNnieParam,

16 SAMPLE_SVP_NNIE_INPUT_DATA_INDEX_S* pstInputDataIdx,

17 SAMPLE_SVP_NNIE_PROCESS_SEG_INDEX_S* pstProcSegIdx,

18 HI_BOOL bInstant)

SAMPLE_SVP_NNIE_Forward中①SAMPLE_COMM_SVP_FlushCache函数主要实现将内存数据刷新到内存中;②HI_MPI_SVP_NNIE_Forward函数同时对输入样本(s)进行CNN预测,对对应样本(s)进行输出响应;③HI_MPI_SVP_NNIE_Query函数用于查询nnie上运行函数的状态,在阻塞模式下,系统等待,直到被查询的函数被调用;在非阻塞模式下,查询当前状态,不做任何操作。

   (7)step7为SAMPLE_SVP_NNIE_Cnn_GetTopN实现软件过程

给出函数调用与参数细节:

 1     s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;

2 /* SAMPLE_COMM_SVP_NNIE_LoadModel(pcModelName,&s_stCnnModel); */

3

4 s_stCnnSoftwareParam.u32TopN = 5;

5 SAMPLE_SVP_NNIE_Cnn_ParamInit(&stNnieCfg, //通过此函数对s_stCnnSoftwareParam进行了赋值操作

6 &s_stCnnNnieParam,

7 &s_stCnnSoftwareParam);

8

9 s32Ret = SAMPLE_SVP_NNIE_Cnn_GetTopN(&s_stCnnNnieParam,

10 &s_stCnnSoftwareParam);

11

12 HI_S32 SAMPLE_SVP_NNIE_Cnn_GetTopN(SAMPLE_SVP_NNIE_PARAM_S*pstNnieParam,

13 SAMPLE_SVP_NNIE_CNN_SOFTWARE_PARAM_S* pstSoftwareParam)

此函数目前基本不修改,函数内部具体实现目前暂不说明,只需注意一点如果改变了网络结构,请确保SAMPLE_SVP_NNIE_Cnn_GetTopN

函数的输入数据正确。

   (8)step8为SAMPLE_SVP_NNIE_Cnn_PrintResult打印blob参数值

给出函数调用与参数细节:

 1     s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;

2 /* SAMPLE_COMM_SVP_NNIE_LoadModel(pcModelName,&s_stCnnModel); */

3

4 s_stCnnSoftwareParam.u32TopN = 5;

5 SAMPLE_SVP_NNIE_Cnn_ParamInit(&stNnieCfg, //通过此函数对s_stCnnSoftwareParam进行了赋值操作

6 &s_stCnnNnieParam,

7 &s_stCnnSoftwareParam);

8

9 s32Ret = SAMPLE_SVP_NNIE_Cnn_PrintResult(&(s_stCnnSoftwareParam.stGetTopN),

10 s_stCnnSoftwareParam.u32TopN);

11

12 HI_S32 SAMPLE_SVP_NNIE_Cnn_PrintResult(SVP_BLOB_S *pstGetTopN,

13 HI_U32 u32TopN)

有什么问题,大家可以提出来,一起讨论,后面将给出mobilefacenet的NNIE实现。

以上是 mobilefacenet.cfg参数配置与SVP_NNIE_Cnn实现分析 的全部内容, 来源链接: utcz.com/a/121737.html

回到顶部